久久综合丝袜日本网手机版,日韩欧美中文字幕在线三区,亚洲精品国产品国语在线,极品在线观看视频婷婷

      <small id="aebxz"><menu id="aebxz"></menu></small>
    1. 《數(shù)學(xué)史》讀后感

      時間:2022-12-16 18:31:51 讀后感 我要投稿

      《數(shù)學(xué)史》讀后感

        認真讀完一本名著后,你有什么領(lǐng)悟呢?不能光會讀哦,寫一篇讀后感吧。那要怎么寫好讀后感呢?下面是小編整理的《數(shù)學(xué)史》讀后感,希望對大家有所幫助。

      《數(shù)學(xué)史》讀后感

      《數(shù)學(xué)史》讀后感1

        今年的寒假出奇的漫長,在這漫長的寒假里,我讀了一本我不怎么喜歡的書——《數(shù)學(xué)史》,為什么不喜歡呢?是因為我很多不懂,但是讀著讀著我就喜歡上了,《數(shù)學(xué)史》記錄著人類數(shù)學(xué)歷史發(fā)展的進程,讀了它,我有一點膚淺的體會。

        體會一:數(shù)學(xué)源自于與生活的需要與發(fā)展。

        書中寫到:人類在很久之前就已經(jīng)具有識辨多寡的能力,從這種原始的數(shù)學(xué)到抽象的“數(shù)”概念的形成,是一個緩慢漸進的過程。人們?yōu)榱朔奖阌谏畋阌辛怂阈g(shù),于是開始用手指頭去“計算”,手指頭計數(shù)不夠就開始用石頭,結(jié)繩,刻痕去計計數(shù)。例如:古埃及的象形數(shù)字;巴比倫的楔形數(shù)字;中國的甲骨文數(shù)字;希臘的阿提卡數(shù)字;中國籌算術(shù)碼等等。雖然每種數(shù)字的誕生都有不同的背景與用途,以及運算法則,但都同樣在人類歷史發(fā)展和數(shù)學(xué)發(fā)展起著至關(guān)重要的作用,極大地推動了人類文明的前進。

        體會二:河谷文明和早期數(shù)學(xué)在歷史的長河一樣璀璨奪目。

        歷史學(xué)家往往把興起于埃及,美索不達米亞,中國和印度等地域的古文明稱為“河谷文明”,早期的數(shù)學(xué),就是在尼羅河,底格里斯河與幼發(fā)拉底河,黃河與長江,印度河與恒河等河谷地帶首先發(fā)展起來的。埃及人留下來的兩部草紙書——萊茵徳紙草書和莫斯科紙草書,還有經(jīng)歷幾千年不倒的神秘金字塔,給后人詮釋了古埃及人在代數(shù)幾何的`偉大成就,也給后人留下了輝煌的文化歷史,而美索不達米亞在代數(shù)計算方面更是達到令人不可思議的程度。三次方程,畢達哥拉斯都是它創(chuàng)造的不朽的歷史,在數(shù)學(xué)史上的地位是至關(guān)重要的。

        古人云:讀史使人明智。讀了《數(shù)學(xué)史》讓我明白:數(shù)學(xué)源于生活,高于生活,最終服務(wù)于生活,運用于生活。

      《數(shù)學(xué)史》讀后感2

        在任何起點上要想學(xué)好數(shù)學(xué),我們需要先理解相關(guān)問題,然后才能賦予答案的意義 ——引言

        數(shù)學(xué), 似乎是一個枯燥的學(xué)科,但卻是我們生活里最為有用的工具之一,它是物理化學(xué)生物的搖籃,是政治經(jīng)濟學(xué)的基礎(chǔ),是市場里的公平稱,是我們量化自己的必要工具...是的,數(shù)學(xué)是一個“工具箱”!那么,前人是怎么樣把這個工具弄得更為人性化,更能讓我們好好地使用呢?看完《這才是好讀的數(shù)學(xué)史》后,我知道了許多。

        《這才是好讀的數(shù)學(xué)史》介紹了數(shù)學(xué)從有記載的源頭,到最初的算數(shù),再到代數(shù)、幾何等領(lǐng)域不斷地深入化發(fā)展的歷史過程。本書按照歷史發(fā)展順序,先后介紹了數(shù)學(xué)的開端,古希臘的數(shù)學(xué),古印度的數(shù)學(xué),古阿拉伯的.數(shù)學(xué),中世紀歐洲的數(shù)學(xué),十五和十六世紀的代數(shù)學(xué)。

        在人類對于數(shù)學(xué)漫漫求索之路上,誕生了許多古代文化,而這些古代文化發(fā)展了各種各樣的數(shù)學(xué) 。其中,古代伊拉克的歷史跨越了數(shù)千年,它包括了許多文明,如蘇美爾,巴比倫,亞述,波斯和希臘文明。所偶有這些文明都了解并使用數(shù)學(xué),但有很多變化。在這兒不得不提到的是古希臘數(shù)學(xué)。在此之前,各個文明運用數(shù)學(xué)僅僅是用來協(xié)助、解決一些簡單的生活問題,有時不就此滿足的人們也會有簡單的探索,但希臘的數(shù)學(xué)家們是獨一無二的,他們將邏輯推理和證明作為數(shù)學(xué)中心,也是正因如此,他們永遠改變了運用數(shù)學(xué)的意義。

        數(shù)學(xué)源于生活卻高于生活。如今的數(shù)學(xué)在生活中被廣泛的運用,一起熱愛數(shù)學(xué)吧!向為數(shù)學(xué)做出巨大奉獻的前人們致敬!

      《數(shù)學(xué)史》讀后感3

        數(shù)學(xué),一根串著文明歷史發(fā)展的閃耀金繩,它與文學(xué)物理學(xué)藝術(shù)經(jīng)濟學(xué)或音樂一樣,是人類不斷發(fā)展,努力的結(jié)果。

        對數(shù)學(xué)不太敏感的我,拿起這本數(shù)學(xué)史,一開始是不愿意翻開的,認為它語言生澀,一定有很多的生僻又陌生的專有名詞,幾乎滿篇皆是,所以從收到這本書之后2天內(nèi)都沒有看過。但是為了完成劉老師的作業(yè),我硬著頭皮翻開了這本陌生的書。這本書是以時間發(fā)展為主線進行編布的。

        讀 開端的時候我就覺得這本書很不一樣語言是親切、嚴謹?shù)挠^點是新穎的。作者“從歷史開始學(xué)數(shù)學(xué)”的觀點讓我對這本書產(chǎn)生了興趣。變得愿意與他一起跟隨數(shù)學(xué)的腳步,一頁一頁翻下去,讀下去。在書本中,有許多我認識的老朋友,他們曾經(jīng)在小學(xué)或是初中課本上出現(xiàn)過。像歐幾里得、笛卡爾。他們是數(shù)學(xué)的奠基人,為數(shù)學(xué)之路鋪上卵石。在這本書中也出現(xiàn)過一些我不熟悉的偉大數(shù)學(xué)家,他們在認真探究,證明的場景一幕幕浮現(xiàn)在腦海,令人心生敬畏。

        我記憶最深刻的就是一位打破了“數(shù)學(xué)家都是男性”觀念的法國優(yōu)秀女數(shù)學(xué)家———索菲.熱爾曼!

        她在所謂的“啟蒙運動”中成長,懷揣著熾熱的`想成為數(shù)學(xué)家的愿望,在困難重重克服了社會對女性知識分子的偏見,在彈性理論上取得重要結(jié)果。實在令人佩服!

        當今社會,數(shù)學(xué)在多領(lǐng)域工作,在工地、廣場、車站、實驗室......

        我們需要數(shù)學(xué),今天需要數(shù)學(xué),未來也一樣需要數(shù)學(xué),因為“數(shù)學(xué)不是被發(fā)現(xiàn)出來的,而是被發(fā)明出來的!”

        學(xué)好數(shù)學(xué)就是走好未來的一大步!

      《數(shù)學(xué)史》讀后感4

        在這個寒假,我閱讀了一本名叫《這才是好讀的數(shù)學(xué)史》這本書叫這個名字確實是名副其實,他為人們介紹了最全面的數(shù)學(xué)史,以及名人與數(shù)學(xué)之前的故事,還有各國數(shù)學(xué)的起源到發(fā)展。

        數(shù)學(xué)的形狀和名稱以及關(guān)于計數(shù)和算數(shù)運算的基本概念似乎是人類的遺產(chǎn)。早在公元前500年,數(shù)學(xué)就出現(xiàn)了,隨著社會的不斷發(fā)展,就需要一些方法來統(tǒng)計拖款欠稅的數(shù)額等等,這時候數(shù)學(xué)就開始出現(xiàn)了。那時候的古埃及人用墨水在紙草上書寫這種,這種材料是不易保存數(shù)千年的。大多數(shù)?脊偶彝诰虻氖^都是在神廟和陵墓附近,而不是在古城遺址。因此我們只能通過少量的.資料來考察古埃及的數(shù)學(xué)發(fā)展史。

        許多古代文化發(fā)展了各式各樣的數(shù)學(xué),但是希臘數(shù)學(xué)家們是獨一無二的,他們將邏輯推理和證明擺在數(shù)學(xué)的中心位置。希臘數(shù)學(xué)傳統(tǒng)的保持和發(fā)展一直延續(xù)到公元400年。我們了解的希臘數(shù)學(xué)最早是歐幾里得的《幾何原本》,可我們也只了解這一本著名的書。希臘數(shù)學(xué)的優(yōu)勢便是幾何,盡管希臘人也研究了整數(shù),天文學(xué),力學(xué)。但是根據(jù)古希臘幾何學(xué)史學(xué)家的說法,最早的希臘數(shù)學(xué)家是600年前的泰勒斯,畢達哥拉斯都要比他晚一個世紀,當記錄歷史時,泰勒斯和畢達哥拉斯都成為了遠古時期的神話級人物。

        又在20世紀初,希伯爾特提出了一系列重要問題,又在21世紀開始在克萊數(shù)學(xué)學(xué)院的帶領(lǐng)下,選擇7個數(shù)學(xué)課題,并且提供的100萬美金來解決每一個問題數(shù)論則是另一個發(fā)展方向。正如我們的數(shù)學(xué)概念小史中解釋的,費馬的最后定理在1994年得到了證明。

        在今天的數(shù)學(xué)中涉及了許多不同的領(lǐng)域,所以我們要好好學(xué)習(xí)數(shù)學(xué),并且多看有關(guān)數(shù)學(xué)的書,才能使我們的數(shù)學(xué)成績突飛猛進。

      《數(shù)學(xué)史》讀后感5

        在這個寒假里,我接觸到了《數(shù)學(xué)史》這本書。這本書介紹了數(shù)學(xué)從有記載的源頭向最初的算術(shù)、幾何、統(tǒng)計學(xué)、運籌學(xué)等領(lǐng)域不斷深化發(fā)展的歷史進程,以及如今數(shù)學(xué)的發(fā)展。

        這本書分為兩篇,上篇是數(shù)學(xué)簡史,下篇是數(shù)學(xué)概念小史。這本書中令我印象最深的數(shù)學(xué)家就是費馬。皮埃爾·德·費馬是屬于文藝復(fù)興時期傳統(tǒng)的人,他處于重新發(fā)掘古希臘知識的中心,但是他卻問了一個希臘人沒有想到過要問的問題—費馬大定理。這個問題困惑了世人358年,直到1994年的'9月19日安德魯·懷爾斯才宣布解開這個問題。這個問題起源于古希臘時代,它聯(lián)系著畢達哥拉斯所建立的數(shù)學(xué)的基礎(chǔ)和現(xiàn)代數(shù)學(xué)中各種最復(fù)雜的思想。費馬大定理的故事和數(shù)學(xué)的歷史有著密不可分的聯(lián)系,它對于“是什么推動著數(shù)學(xué)發(fā)展”,或者是“是什么激勵著數(shù)學(xué)家們”提供了一個獨特的見解。費馬大定理是一個充滿勇氣、欺詐、狡猾和悲慘的英雄傳奇的核心,牽涉到數(shù)學(xué)王國中所有最偉大的英雄。巴里·梅休爾評論說,在某種意義上每個人都在研究費馬問題,但只是零星地而沒有把它作為目標,因為這個證明需要把現(xiàn)代數(shù)學(xué)的整個力量聚集起來才能完全解答。安德魯所做的就是再一次把似乎是相隔很遠的一些數(shù)學(xué)領(lǐng)域結(jié)合在一起。因而,他的工作似乎證明了自費馬問題提出以來數(shù)學(xué)所經(jīng)歷的多元化過程是合理的。

        讀了數(shù)學(xué)史后,我認為數(shù)學(xué)在我們的生活中扮演著不可或缺的角色,只有學(xué)好數(shù)學(xué),學(xué)會應(yīng)用數(shù)學(xué),我們才能在這個正在向數(shù)字化發(fā)展的社會穩(wěn)穩(wěn)地站住腳跟。

      《數(shù)學(xué)史》讀后感6

        本書上篇 數(shù)學(xué)簡史共12章節(jié),以時間順序講述。從3.7萬年到如今,人類在不斷進步,而數(shù)學(xué)也隨著人類的進步而進步。在這本書中,強調(diào)了數(shù)學(xué)的抽象性與神秘性。

        我們現(xiàn)在學(xué)習(xí)的知識都是先輩們經(jīng)過漫長探索、研究、討論總結(jié)出的。書中出現(xiàn)的故事和公式使人眼前一新。比如古埃及人求圓的面積時,實際上是求圓的近似值。如今大家都知道π·r,古埃及人卻是用(8/9·d)求S圓的近似值?梢园l(fā)現(xiàn)古埃及人在這個公式里并沒有使用到“π”,這樣反而要方便些。

        我注意到的一個故事是:21世紀開始,克萊學(xué)院決定在克萊的領(lǐng)導(dǎo)下,選擇7個數(shù)學(xué)課題,并予每個課題100萬美金的獎金,而那7個數(shù)學(xué)課題是關(guān)于“千禧年問題”書中并沒有提到7個問題分別是什么,于是便上網(wǎng)查了查。分別是:戴雅猜想、霍奇猜想、納維爾-斯托克斯方程、P與NP問題、龐家萊猜想、黎曼假設(shè)、楊-米爾斯理論。這7個問題是真的難,連題目都看不懂的那種難.

        有一個問題與開普勒猜想有關(guān):如何將最大數(shù)量的.球體放置在最小的空間中,我認為這和奇點有些相似,但看起來不成立的樣子。但在那些數(shù)學(xué)家的眼里,這仿佛是一個十分有趣,又值得思考的問題。托馬斯·黑爾斯最終證明了它。

        數(shù)學(xué)是抽象的,也是無限的,他們的出現(xiàn)大概是我們的祖先為了方便生活而發(fā)明出來的。到如今,數(shù)學(xué)在不斷的進步,但還是有許多十分困難的問題在等著我們?nèi)ソ獯。?shù)學(xué)不僅在生活中扮演著重要的角色,還是世界通用的語言。

      《數(shù)學(xué)史》讀后感7

        數(shù)學(xué)也許對我們來說僅僅是一門枯燥且乏味的科目,但在學(xué)習(xí)數(shù)學(xué)這門科目的時候,誰又曾想過數(shù)學(xué)是從何而來的,數(shù)學(xué)的發(fā)展歷程又是怎么樣的……

        本來我并不知道這些,或者用詞恰當一些,數(shù)學(xué)對于我來說是熟悉卻陌生的:說熟悉,從最初的小學(xué)一年級接觸數(shù)學(xué),可以說到現(xiàn)在時間已經(jīng)蠻久了;說陌生,從最初接觸數(shù)學(xué)以來,我并不了解關(guān)于數(shù)學(xué)的發(fā)展經(jīng)過以及數(shù)學(xué)的由來。

        《數(shù)學(xué)史》這本書概括了數(shù)學(xué)的出現(xiàn)以及發(fā)展,將數(shù)學(xué)發(fā)展的幾千年的歷史寫以書的形式,讓人們更加容易理解。同時,《數(shù)學(xué)史》也在講述發(fā)展史的同時,將數(shù)學(xué)概念本身講解的十分清楚。

        從希臘人到哥德爾,在數(shù)學(xué)的發(fā)展中一直人才輩出。數(shù)學(xué)的發(fā)展雖追蹤歐洲數(shù)學(xué)的發(fā)展,但也不失中國,印度和阿拉伯文明。《數(shù)學(xué)史》將世界上的數(shù)學(xué)文明都總結(jié)在了書中,十分經(jīng)典。

        在書中,我了解到:在早期人類社會中,數(shù)學(xué)史抽象的科學(xué),恩格斯指出:“數(shù)學(xué)在一門科學(xué)中的應(yīng)用程度,標志著這門科學(xué)的成熟程度!钡浆F(xiàn)如今,數(shù)學(xué)對科學(xué)和社會提供著不可缺的`技術(shù)與理論支持。

        數(shù)學(xué)也是一門累積性強的學(xué)科,重大的數(shù)學(xué)理論總是在繼承和發(fā)展原有理論的基礎(chǔ)上建立起來的,他們不僅不會推翻原有理論,反而總是包容它們,在原有的基礎(chǔ)上再做更多的鉆研。

        讀了這本書,讓我對數(shù)學(xué)有了新的認識和感悟,也讓我從更深層次了解到了數(shù)學(xué)的魅力與偉大以及對前輩的深深崇敬!稊(shù)學(xué)史》這本書是一本十分難得的記錄數(shù)學(xué)發(fā)展史的書,它不僅條理清晰且易讀,實為優(yōu)秀的數(shù)學(xué)史教材。

      《數(shù)學(xué)史》讀后感8

        最近一段時間,我花兩天時間認真閱讀了《這才是好讀的數(shù)學(xué)史》這本書。這使得我對數(shù)學(xué)的發(fā)展有了更多的了解。

        通過這本書的內(nèi)容,我了解到了數(shù)學(xué)是如何發(fā)展起來的,和一些為數(shù)學(xué)發(fā)展做出過巨大貢獻的集體或個人。從這本書里,我知道了,數(shù)學(xué)是從古代中東地區(qū)發(fā)展起來的,在經(jīng)過一段時間的發(fā)展后,之后便在古希臘,印度,之后再是伊斯蘭帝國成長和發(fā)揚光大,后來再在歐洲得到進一步的發(fā)展。這本書還告訴了我,數(shù)學(xué)不是男性的天下,因為書里還提及了一些十分杰出的女性數(shù)學(xué)家,她們也為數(shù)學(xué)的發(fā)展做出了巨大的貢獻。

        數(shù)學(xué)史是一個龐大的內(nèi)容,可以說,自從文明開始,就有了人去研究和在生活之中使用數(shù)學(xué),數(shù)學(xué)為人們的生活帶去了巨大的'便利。這本書在做表述數(shù)學(xué)史這一龐大的內(nèi)容時,還將其盡量簡化,簡化成了幾個板塊并且還是用十分生動的有趣的語言,但這樣也有缺點,就是有很多其他的事情沒有介紹到,同時對于中國的數(shù)學(xué),作者可能是沒能找到太多相關(guān)的資料,所以并沒有介紹太多。

        《這才是好讀的數(shù)學(xué)史》這本書先是說了數(shù)學(xué)在各個古代文明中的發(fā)展,之后又講了其中世界上有名的數(shù)學(xué)科目,并分別介紹了在這些方面出名的數(shù)學(xué)家,在后面又講到了現(xiàn)代數(shù)學(xué),通過這兒我知道了,我們現(xiàn)在所學(xué)的數(shù)學(xué)是非常古老的,幾千年前的東西了,我們甚至連中世紀的水平都沒達到,也由此可以看出數(shù)學(xué)的發(fā)展之快。數(shù)學(xué)在一次次的個性與進步當中,變得越來越深奧,難以理解。

        從千年前的1+1=2再到函數(shù),再到微積分,再到現(xiàn)代數(shù)學(xué),數(shù)學(xué)也開始運用在更多地方,像航天,工程等,所以說,只有學(xué)好數(shù)學(xué)才能為社會做出更大的貢獻。

      《數(shù)學(xué)史》讀后感9

        最近,我讀了《這才是好讀的數(shù)學(xué)史》一書的上半部分。讀完后我十分感慨,原來數(shù)學(xué)是一門如此有趣且有豐富內(nèi)涵的學(xué)科。

        這本書記載了數(shù)學(xué)從有記載的源頭再向代數(shù)、幾何(平面幾何、立體幾何、解析幾何)、統(tǒng)計學(xué)、運籌學(xué)等領(lǐng)域不斷深化發(fā)展的歷史進程。全書按歷史發(fā)展的順序先后介紹了古希臘、古印度、古巴比倫、古代中國、中世紀歐洲在十五世紀至十六世紀數(shù)學(xué)在順應(yīng)社會實踐需要的基礎(chǔ)上出現(xiàn)的深化、突破。

        在介紹數(shù)學(xué)發(fā)展的基礎(chǔ)上,這本書還以歷史的視角對三十種有關(guān)基礎(chǔ)數(shù)學(xué)的普通概念進行了獨立精彩的敘述,再現(xiàn)了畢達哥拉斯、歐幾里得、歐拉等數(shù)學(xué)大師的風(fēng)采,還特地的穿插了女性數(shù)學(xué)家在數(shù)學(xué)發(fā)展中做出的巨大貢獻,從各方面為讀者還原了真實、有趣的數(shù)學(xué)史。

        數(shù)學(xué)與文學(xué)、物理學(xué)、藝術(shù)、經(jīng)濟學(xué)或音樂一樣,是人類不斷發(fā)展和努力的結(jié)果。它既有過去的歷史,又有未來的`發(fā)展,更有今天的廣泛應(yīng)用。我們今天學(xué)習(xí)和使用的數(shù)學(xué),在許多方面都與一千年前、五百年前甚至一百年前的數(shù)學(xué)有很大不同。在21世紀,數(shù)學(xué)無疑會進一步發(fā)展。學(xué)習(xí)數(shù)學(xué)就像認識一個人一樣,你對他的過去了解的越多,你現(xiàn)在和將來就越能理解他并與其互動。

        在任何起點上想學(xué)好數(shù)學(xué),我們需要先理解相關(guān)問題,然后才能賦予題目有意義的答案。理解一個問題往往取決于了解這個概念的理解,所以想理解數(shù)學(xué),就來讀《這才是好讀的數(shù)學(xué)史》。

      《數(shù)學(xué)史》讀后感10

        《數(shù)學(xué)史》這本書從希臘數(shù)學(xué)講到了現(xiàn)代數(shù)學(xué)。我所感興趣的部分有幾個,一是關(guān)于以前的技術(shù)系統(tǒng)。我不知搭配人們是從何時開始計數(shù)的,但是當時的以十的冪為基數(shù)的計數(shù)系統(tǒng)以及六十進制的分數(shù)表示雖然不及現(xiàn)在的阿拉伯數(shù)字方便,但仍值得我們稱贊。第二是希臘數(shù)學(xué)。雖然希臘人并不太在意應(yīng)用數(shù)學(xué),但是我覺得他們所研究的幾何也是需要來源于生活的`,是要從生活中去尋找,發(fā)現(xiàn)和提取的。也就是那個時候,歐幾里得編出了影響深遠的《幾何原本》。我們現(xiàn)在所學(xué)的幾何就與《幾何原本》有著很大的關(guān)系,所以說這么看來的話,到現(xiàn)在我們也不過只是學(xué)到了數(shù)學(xué)的皮毛而已,許多的知識還是希臘數(shù)學(xué)。且其中的平行公設(shè)到了十九世紀仍然被研究。所以用影響深遠來描述《幾何原本》,應(yīng)該不為過吧。同時,他們也對Π有了一些認識。由此可見,他們不僅從生活中提煉出了數(shù)學(xué)思想,而且還在上面添加了許多華麗的色彩,使得整個數(shù)學(xué)系統(tǒng)更加龐大,也讓數(shù)學(xué)漸漸成為我們不敢仰望的存在。最后一個令我感興趣的部分是代數(shù)。步入初中學(xué)習(xí)后,我們開始接觸代數(shù),但讀了《數(shù)學(xué)史》我才知道代數(shù)竟然是十六、十七世紀所產(chǎn)生的,過了幾個世紀,代數(shù)又成為了讓人頭疼的部分。并且在那個時候,他們就已經(jīng)開始研究一些復(fù)雜的代數(shù)問題了。

        《數(shù)學(xué)史》向我們完整地展示了數(shù)學(xué)各個枝節(jié)細致的發(fā)展過程,這種過程被描寫的也還算有趣(至少讓我看得下去),雖然專業(yè)術(shù)語很多,閱讀有障礙,但我不得不說,這確實是好讀的數(shù)學(xué)史。

      【《數(shù)學(xué)史》讀后感】相關(guān)文章:

      從數(shù)學(xué)教材看數(shù)學(xué)史07-04

      《數(shù)學(xué)史》讀后感05-01

      《數(shù)學(xué)史通論》讀后感07-02

      數(shù)學(xué)史融入小學(xué)教學(xué)案例設(shè)計與解析論文06-25

      論小學(xué)數(shù)學(xué)教材中數(shù)學(xué)史內(nèi)容及呈現(xiàn)方式07-03

      讀后感讀后感01-03

      干法讀后感的讀后感07-05

      匆匆讀后感400字讀后感07-03

      經(jīng)典的讀后感01-23

      讀后感03-24