久久综合丝袜日本网手机版,日韩欧美中文字幕在线三区,亚洲精品国产品国语在线,极品在线观看视频婷婷

      <small id="aebxz"><menu id="aebxz"></menu></small>
    1. 高一數(shù)學(xué)知識點總結(jié)

      時間:2022-12-07 15:14:44 總結(jié)范文 我要投稿

      高一數(shù)學(xué)知識點總結(jié)(15篇)

        總結(jié)是在一段時間內(nèi)對學(xué)習(xí)和工作生活等表現(xiàn)加以總結(jié)和概括的一種書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,因此我們需要回頭歸納,寫一份總結(jié)了?偨Y(jié)怎么寫才不會流于形式呢?以下是小編為大家整理的高一數(shù)學(xué)知識點總結(jié),希望對大家有所幫助。

      高一數(shù)學(xué)知識點總結(jié)(15篇)

      高一數(shù)學(xué)知識點總結(jié)1

        一、集合有關(guān)概念

        1. 集合的含義

        2. 集合的中元素的三個特性:

        (1) 元素的確定性,

        (2) 元素的互異性,

        (3) 元素的無序性,

        3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

        (1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

        (2) 集合的表示方法:列舉法與描述法。

        ? 注意:常用數(shù)集及其記法:

        非負整數(shù)集(即自然數(shù)集) 記作:N

        正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R

        1) 列舉法:{a,b,c……}

        2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

        3) 語言描述法:例:{不是直角三角形的三角形}

        4) Venn圖:

        4、集合的分類:

        (1) 有限集 含有有限個元素的集合

        (2) 無限集 含有無限個元素的集合

        (3) 空集 不含任何元素的集合 例:{x|x2=-5}

        二、集合間的基本關(guān)系

        1.“包含”關(guān)系—子集

        注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

        反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

        2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)

        實例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

        即:① 任何一個集合是它本身的子集。A?A

       、谡孀蛹:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)

       、廴绻 A?B, B?C ,那么 A?C

        ④ 如果A?B 同時 B?A 那么A=B

        3. 不含任何元素的集合叫做空集,記為Φ

        規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

        ? 有n個元素的集合,含有2n個子集,2n-1個真子集

        三、集合的運算

        運算類型 交 集 并 集 補 集

        定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

        由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

        設(shè)S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

        二、函數(shù)的有關(guān)概念

        1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.

        注意:

        1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。

        求函數(shù)的定義域時列不等式組的主要依據(jù)是:

        (1)分式的分母不等于零;

        (2)偶次方根的被開方數(shù)不小于零;

        (3)對數(shù)式的真數(shù)必須大于零;

        (4)指數(shù)、對數(shù)式的底必須大于零且不等于1.

        (5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

        (6)指數(shù)為零底不可以等于零,

        (7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.

        相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致 (兩點必須同時具備)

        2.值域 : 先考慮其定義域

        (1)觀察法

        (2)配方法

        (3)代換法

        3. 函數(shù)圖象知識歸納

        (1)定義:在平面直角坐標系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上 .

        (2) 畫法

        A、 描點法:

        B、 圖象變換法

        常用變換方法有三種

        1) 平移變換

        2) 伸縮變換

        3) 對稱變換

        4.區(qū)間的概念

        (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

        (2)無窮區(qū)間

        (3)區(qū)間的數(shù)軸表示.

        5.映射

        一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:A B為從集合A到集合B的一個映射。記作f:A→B

        6.分段函數(shù)

        (1)在定義域的不同部分上有不同的解析表達式的函數(shù)。

        (2)各部分的自變量的取值情況.

        (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

        補充:復(fù)合函數(shù)

        如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復(fù)合函數(shù)。

        二.函數(shù)的性質(zhì)

        1.函數(shù)的單調(diào)性(局部性質(zhì))

        (1)增函數(shù)

        設(shè)函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當x1

        如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.

        注意:函數(shù)的單調(diào)性是函數(shù)的.局部性質(zhì);

        (2) 圖象的特點

        如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

        (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

        (A) 定義法:

        ○1 任取x1,x2∈D,且x1

        ○2 作差f(x1)-f(x2);

        ○3 變形(通常是因式分解和配方);

        ○4 定號(即判斷差f(x1)-f(x2)的正負);

        ○5 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

        (B)圖象法(從圖象上看升降)

        (C)復(fù)合函數(shù)的單調(diào)性

        復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

        注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

        8.函數(shù)的奇偶性(整體性質(zhì))

        (1)偶函數(shù)

        一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

        (2).奇函數(shù)

        一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

        (3)具有奇偶性的函數(shù)的圖象的特征

        偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.

        利用定義判斷函數(shù)奇偶性的步驟:

        ○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點對稱;

        ○2確定f(-x)與f(x)的關(guān)系;

        ○3作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).

        (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

        (3)利用定理,或借助函數(shù)的圖象判定 .

        9、函數(shù)的解析表達式

        (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關(guān)系時,一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.

        (2)求函數(shù)的解析式的主要方法有:

        1) 湊配法

        2) 待定系數(shù)法

        3) 換元法

        4) 消參法

        10.函數(shù)最大(小)值(定義見課本p36頁)

        ○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值

        ○2 利用圖象求函數(shù)的最大(小)值

        ○3 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:

        如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);

        如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

      高一數(shù)學(xué)知識點總結(jié)2

        一、集合有關(guān)概念

        1.集合的含義

        2.集合的中元素的三個特性:

        (1)元素的確定性如:世界上的山

        (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

        (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

        3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

        (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

        (2)集合的表示方法:列舉法與描述法。

        注意:常用數(shù)集及其記法:

        非負整數(shù)集(即自然數(shù)集)記作:N

        正整數(shù)集:N_或N+

        整數(shù)集:Z

        有理數(shù)集:Q

        實數(shù)集:R

        1)列舉法:{a,b,c……}

        2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合{xR|x-3>2},{x|x-3>2}

        3)語言描述法:例:{不是直角三角形的三角形}

        4)Venn圖:

        4、集合的分類:

        (1)有限集含有有限個元素的集合

        (2)無限集含有無限個元素的集合

        (3)空集不含任何元素的集合例:{x|x2=-5}

        二、集合間的基本關(guān)系

        1.“包含”關(guān)系—子集

        注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

        反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

        2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)

        實例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

        即:①任何一個集合是它本身的子集。AA

       、谡孀蛹:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)

       、廴绻鸄B,BC,那么AC

       、苋绻鸄B同時BA那么A=B

        3.不含任何元素的集合叫做空集,記為Φ

        規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

        4.子集個數(shù):

        有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

        三、集合的運算

        運算類型交集并集補集

        定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

        由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

        設(shè)S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

        記作,即

        CSA=

        AA=A

        AΦ=Φ

        AB=BA

        ABA

        ABB

        AA=A

        AΦ=A

        AB=BA

        ABA

        ABB

        (CuA)(CuB)

        =Cu(AB)

        (CuA)(CuB)

        =Cu(AB)

        A(CuA)=U

        A(CuA)=Φ.

        二、函數(shù)的有關(guān)概念

        1.函數(shù)的概念

        設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

        注意:

        1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。

        求函數(shù)的定義域時列不等式組的主要依據(jù)是:

        (1)分式的分母不等于零;

        (2)偶次方根的被開方數(shù)不小于零;

        (3)對數(shù)式的真數(shù)必須大于零;

        (4)指數(shù)、對數(shù)式的底必須大于零且不等于1.

        (5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合.

        (6)指數(shù)為零底不可以等于零,

        (7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.

        相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關(guān));

       、诙x域一致(兩點必須同時具備)

        2.值域:先考慮其定義域

        (1)觀察法(2)配方法(3)代換法

        3.函數(shù)圖象知識歸納

        (1)定義:

        在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上.

        (2)畫法

        1.描點法:2.圖象變換法:常用變換方法有三種:1)平移變換2)伸縮變換3)對稱變換

        4.區(qū)間的概念

        (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間(2)無窮區(qū)間(3)區(qū)間的數(shù)軸表示.

        5.映射

        一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意一個元素x,在集合B中都有確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從集合A到集合B的一個映射。記作“f(對應(yīng)關(guān)系):A(原象)B(象)”

        對于映射f:A→B來說,則應(yīng)滿足:

        (1)集合A中的每一個元素,在集合B中都有象,并且象是的;

        (2)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個;

        (3)不要求集合B中的每一個元素在集合A中都有原象。

        6.分段函數(shù)

        (1)在定義域的不同部分上有不同的解析表達式的函數(shù)。

        (2)各部分的自變量的取值情況.

        (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的'并集.

        補充:復(fù)合函數(shù)

        如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù)。

        二.函數(shù)的性質(zhì)

        1.函數(shù)的單調(diào)性(局部性質(zhì))

        (1)增函數(shù)

        設(shè)函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當x1

        如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1

        注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

        (2)圖象的特點

        如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的

        (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

        (A)定義法:

        (1)任取x1,x2∈D,且x1

        (2)作差f(x1)-f(x2);或者做商

        (3)變形(通常是因式分解和配方);

        (4)定號(即判斷差f(x1)-f(x2)的正負);

        (5)下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

        (B)圖象法(從圖象上看升降)

        (C)復(fù)合函數(shù)的單調(diào)性

        復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

        注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

        8.函數(shù)的奇偶性(整體性質(zhì))

        (1)偶函數(shù):一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

        (2)奇函數(shù):一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

        (3)具有奇偶性的函數(shù)的圖象的特征:偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.

        9.利用定義判斷函數(shù)奇偶性的步驟:

        ○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點對稱;

        ○2確定f(-x)與f(x)的關(guān)系;

        ○3作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).

        注意:函數(shù)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,(1)再根據(jù)定義判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;(3)利用定理,或借助函數(shù)的圖象判定.

        10、函數(shù)的解析表達式

        (1)函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關(guān)系時,一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.

        (2)求函數(shù)的解析式的主要方法有:1.湊配法2.待定系數(shù)法3.換元法4.消參法

        11.函數(shù)(小)值

        ○1利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的(小)值

        ○2利用圖象求函數(shù)的(小)值

        ○3利用函數(shù)單調(diào)性的判斷函數(shù)的(小)值:

        如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有值f(b);

        如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

        第三章基本初等函數(shù)

        一、指數(shù)函數(shù)

        (一)指數(shù)與指數(shù)冪的運算

        1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈_.

        負數(shù)沒有偶次方根;0的任何次方根都是0,記作。

        當是奇數(shù)時,,當是偶數(shù)時,

        2.分數(shù)指數(shù)冪

        正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:

        ,

        0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義

        3.實數(shù)指數(shù)冪的運算性質(zhì)

        (1);

        (2);

        (3).

        (二)指數(shù)函數(shù)及其性質(zhì)

        1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù),其中x是自變量,函數(shù)的定義域為R.

        注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.

        2、指數(shù)函數(shù)的圖象和性質(zhì)

        a>10

        定義域R定義域R

        值域y>0值域y>0

        在R上單調(diào)遞增在R上單調(diào)遞減

        非奇非偶函數(shù)非奇非偶函數(shù)

        函數(shù)圖象都過定點(0,1)函數(shù)圖象都過定點(0,1)

        注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:

        (1)在[a,b]上,值域是或;

        (2)若,則;取遍所有正數(shù)當且僅當;

        (3)對于指數(shù)函數(shù),總有;

        二、對數(shù)函數(shù)

        (一)對數(shù)

        1.對數(shù)的概念:

        一般地,如果,那么數(shù)叫做以為底的對數(shù),記作:(—底數(shù),—真數(shù),—對數(shù)式)

        說明:○1注意底數(shù)的限制,且;

        ○2;

        ○3注意對數(shù)的書寫格式.

        兩個重要對數(shù):

        ○1常用對數(shù):以10為底的對數(shù);

        ○2自然對數(shù):以無理數(shù)為底的對數(shù)的對數(shù).

        指數(shù)式與對數(shù)式的互化

        冪值真數(shù)

        =N=b

        底數(shù)

        指數(shù)對數(shù)

        (二)對數(shù)的運算性質(zhì)

        如果,且,,,那么:

        ○1+;

        ○2-;

        ○3.

        注意:換底公式:(,且;,且;).

        利用換底公式推導(dǎo)下面的結(jié)論:(1);(2).

        (3)、重要的公式①、負數(shù)與零沒有對數(shù);②、,③、對數(shù)恒等式

        (二)對數(shù)函數(shù)

        1、對數(shù)函數(shù)的概念:函數(shù),且叫做對數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+∞).

        注意:○1對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如:,都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù).

        ○2對數(shù)函數(shù)對底數(shù)的限制:,且.

        2、對數(shù)函數(shù)的性質(zhì):

        a>10

        定義域x>0定義域x>0

        值域為R值域為R

        在R上遞增在R上遞減

        函數(shù)圖象都過定點(1,0)函數(shù)圖象都過定點(1,0)

        (三)冪函數(shù)

        1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù).

        2、冪函數(shù)性質(zhì)歸納.

        (1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(1,1);

        (2)時,冪函數(shù)的圖象通過原點,并且在區(qū)間上是增函數(shù).特別地,當時,冪函數(shù)的圖象下凸;當時,冪函數(shù)的圖象上凸;

        (3)時,冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨于時,圖象在軸上方無限地逼近軸正半軸.

        第四章函數(shù)的應(yīng)用

        一、方程的根與函數(shù)的零點

        1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

        2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。

        即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

        3、函數(shù)零點的求法:

        ○1(代數(shù)法)求方程的實數(shù)根;

        ○2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

        4、二次函數(shù)的零點:

        二次函數(shù).

        (1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.

        (2)△=0,方程有兩相等實根,二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

        (3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.

      高一數(shù)學(xué)知識點總結(jié)3

        圓的方程定義:

        圓的標準方程(x—a)2+(y—b)2=r2中,有三個參數(shù)a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。

        直線和圓的位置關(guān)系:

        1、直線和圓位置關(guān)系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關(guān)系。

       、佴>0,直線和圓相交、②Δ=0,直線和圓相切、③Δ<0,直線和圓相離。

        方法二是幾何的'觀點,即把圓心到直線的距離d和半徑R的大小加以比較。

        ①dR,直線和圓相離、

        2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。

        3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。

        切線的性質(zhì)

       、艌A心到切線的距離等于圓的半徑;

        ⑵過切點的半徑垂直于切線;

       、墙(jīng)過圓心,與切線垂直的直線必經(jīng)過切點;

       、冉(jīng)過切點,與切線垂直的直線必經(jīng)過圓心;

        當一條直線滿足

       。1)過圓心;

       。2)過切點;

       。3)垂直于切線三個性質(zhì)中的兩個時,第三個性質(zhì)也滿足。

        切線的判定定理

        經(jīng)過半徑的外端點并且垂直于這條半徑的直線是圓的切線。

        切線長定理

        從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。

      高一數(shù)學(xué)知識點總結(jié)4

        立體幾何初步

        柱、錐、臺、球的結(jié)構(gòu)特征

        棱柱

        定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

        分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。

        表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。

        幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

        棱錐

        定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

        分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等

        表示:用各頂點字母,如五棱錐

        幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

        棱臺

        定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

        分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等

        表示:用各頂點字母,如五棱臺

        幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點

        圓柱

        定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

        幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。

        圓錐

        定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

        幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。

        圓臺

        定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

        幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。

        球體

        定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

        幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

        NO.2空間幾何體的三視圖

        定義三視圖

        定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

        注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

        俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

        側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

        NO.3空間幾何體的直觀圖——斜二測畫法

        斜二測畫法

        斜二測畫法特點

        ①原來與x軸平行的線段仍然與x平行且長度不變;

       、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。

        直線與方程

        直線的傾斜角

        定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

        直線的斜率

        定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

        過兩點的直線的斜率公式:

        (注意下面四點)

        (1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

        (2)k與P1、P2的順序無關(guān);

        (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

        (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

        冪函數(shù)

        定義

        形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

        定義域和值域

        當a為不同的.數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域

        性質(zhì)

        對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

        首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

        排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

        排除了為0這種可能,即對于x<0和x>0的所有實數(shù),q不能是偶數(shù);

        排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。

      高一數(shù)學(xué)知識點總結(jié)5

        二次函數(shù)

        I.定義與定義表達式

        一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

        (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

        則稱y為x的二次函數(shù)。

        二次函數(shù)表達式的右邊通常為二次三項式。

        II.二次函數(shù)的'三種表達式

        一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

        頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

        交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

        注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

        h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

        III.二次函數(shù)的圖像

        在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

        IV.拋物線的性質(zhì)

        1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點為拋物線的頂點P。

        特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

        2.拋物線有一個頂點P,坐標為

        P(-b/2a,(4ac-b^2)/4a)

        當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

        3.二次項系數(shù)a決定拋物線的開口方向和大小。

        當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

        |a|越大,則拋物線的開口越小。

      高一數(shù)學(xué)知識點總結(jié)6

        數(shù)學(xué)是利用符號語言研究數(shù)量、結(jié)構(gòu)、變化以及空間模型等概念的一門學(xué)科。小編準備了高一數(shù)學(xué)必修1期末考知識點,希望你喜歡。

        一、集合有關(guān)概念

        1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素.

        2、集合的中元素的三個特性:

        1.元素的確定性; 2.元素的互異性; 3.元素的無序性

        說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素.

        (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素.

        (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

        (4)集合元素的三個特性使集合本身具有了確定性和整體性.

        3、集合的表示:{ } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

        1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

        2.集合的表示方法:列舉法與描述法.

        注意啊:常用數(shù)集及其記法:

        非負整數(shù)集(即自然數(shù)集)記作:N

        正整數(shù)集 N*或N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R

        關(guān)于屬于的概念

        集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A

        列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上.

        描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法.用確定的條件表示某些對象是否屬于這個集合的方法.

       、僬Z言描述法:例:{不是直角三角形的三角形}

        ②數(shù)學(xué)式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

        4、集合的分類:

        1.有限集 含有有限個元素的集合

        2.無限集 含有無限個元素的`集合

        3.空集 不含任何元素的集合 例:{x|x2=-5}

        二、集合間的基本關(guān)系

        1.包含關(guān)系子集

        注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.

        反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

        2.相等關(guān)系(55,且55,則5=5)

        實例:設(shè) A={x|x2-1=0} B={-1,1} 元素相同

        結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

       、 任何一個集合是它本身的子集.AA

       、谡孀蛹:如果AB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)

       、廴绻 AB, BC ,那么 AC

        ④ 如果AB 同時 BA 那么A=B

        3. 不含任何元素的集合叫做空集,記為

        規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

        三、集合的運算

        1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

        記作AB(讀作A交B),即AB={x|xA,且xB}.

        2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}.

        3、交集與并集的性質(zhì):AA = A, A=, AB = BA,AA = A,

        A= A ,AB = BA.

        4、全集與補集

        (1)補集:設(shè)S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

        (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集.通常用U來表示.

        (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U

      高一數(shù)學(xué)知識點總結(jié)7

        集合間的基本關(guān)系

        1.子集,A包含于B,記為:,有兩種可能

        (1)A是B的一部分,

        (2)A與B是同一集合,A=B,A、B兩集合中元素都相同。

        反之:集合A不包含于集合B,記作。

        如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個集合的關(guān)系可以表示為,,B=C。A是C的'子集,同時A也是C的真子集。

        2.真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

        3、不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。

        4、有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-2個非空真子集。如A={1,2,3,4,5},則集合A有25=32個子集,25-1=31個真子集,25-2=30個非空真子集。

        例:集合共有個子集。(13年高考第4題,簡單)

        練習(xí):A={1,2,3},B={1,2,3,4},請問A集合有多少個子集,并寫出子集,B集合有多少個非空真子集,并將其寫出來。

        解析:

        集合A有3個元素,所以有23=8個子集。分別為:①不含任何元素的子集Φ;②含有1個元素的子集{1}{2}{3};③含有兩個元素的子集{1,2}{1,3}{2,3};④含有三個元素的子集{1,2,3}。

        集合B有4個元素,所以有24-2=14個非空真子集。具體的子集自己寫出來。

        此處這么羅嗦主要是為了讓同學(xué)們注意寫的順序,數(shù)學(xué)就是要講究嚴謹性和邏輯性的。一定要養(yǎng)成自己的邏輯習(xí)慣。如果就是為了提高計算能力倒不如直接去菜場賣菜算了,絕對能飛速提高的,那學(xué)數(shù)學(xué)也沒什么必要了。

      高一數(shù)學(xué)知識點總結(jié)8

        一、函數(shù)的單調(diào)性

        1、函數(shù)單調(diào)性的定義

        2、函數(shù)單調(diào)性的判斷和證明:(1)定義法(2)復(fù)合函數(shù)分析法(3)導(dǎo)數(shù)證明法(4)圖象法

        二、函數(shù)的奇偶性和周期性

        1、函數(shù)的奇偶性和周期性的定義

        2、函數(shù)的奇偶性的判定和證明方法

        3、函數(shù)的周期性的判定方法

        三、函數(shù)的圖象

        1、函數(shù)圖象的作法

        (1)描點法

        (2)圖象變換法

        2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。

        常見考法

        本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的`單調(diào)性、最值和圖象等。

        誤區(qū)提醒

        1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。

        2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點問題。

        3、在多個單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號隔開。

        4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點對稱,則函數(shù)一定是非奇非偶函數(shù)。

        5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點法或圖象變換法作函數(shù)的圖象。

      高一數(shù)學(xué)知識點總結(jié)9

        集合間的基本關(guān)系

        1!鞍标P(guān)系—子集

        注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

        反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

        2!跋嗟取标P(guān)系:A=B(5≥5,且5≤5,則5=5)

        實例:設(shè)A={x|x2—1=0}B={—1,1}“元素相同則兩集合相等”

        即:①任何一個集合是它本身的子集。AA

        ②真子集:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)

        ③如果AB,BC,那么AC

       、苋绻鸄B同時BA那么A=B

        3。不含任何元素的集合叫做空集,記為Φ

        規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

        有n個元素的集合,含有2n個子集,2n—1個真子集

        集合的運算

        運算類型交集并集補集

        定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集。記作AB(讀作‘A交B’),即AB={x|xA,且xB}。

        由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:AB(讀作‘A并B’),即AB={x|xA,或xB})。

        設(shè)S是一個集合,A是S的`一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

      高一數(shù)學(xué)知識點總結(jié)10

        考點要求:

        1、幾何體的展開圖、幾何體的三視圖仍是高考的熱點。

        2、三視圖和其他的知識點結(jié)合在一起命題是新教材中考查學(xué)生三視圖及幾何量計算的趨勢。

        3、重點掌握以三視圖為命題背景,研究空間幾何體的結(jié)構(gòu)特征的題型。

        4、要熟悉一些典型的幾何體模型,如三棱柱、長(正)方體、三棱錐等幾何體的三視圖。

        知識結(jié)構(gòu):

        1、多面體的結(jié)構(gòu)特征

        (1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。

        正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱。反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。

       。2)棱錐的底面是任意多邊形,側(cè)面是有一個公共頂點的三角形。

        正棱錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐。特別地,各棱均相等的正三棱錐叫正四面體。反過來,正棱錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。

       。3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

        2、旋轉(zhuǎn)體的結(jié)構(gòu)特征

       。1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到。

       。2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到。

       。3)圓臺可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。

       。4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。

        3、空間幾何體的三視圖

        空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖。

        三視圖的長度特征:“長對正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬。若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實、虛線的.畫法。

        4、空間幾何體的直觀圖

        空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:

       。1)畫幾何體的底面

        在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點O,畫直觀圖時,把它們畫成對應(yīng)的x′軸、y′軸,兩軸相交于點O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸。已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话搿?/p>

       。2)畫幾何體的高

        在已知圖形中過O點作z軸垂直于xOy平面,在直觀圖中對應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。

      高一數(shù)學(xué)知識點總結(jié)11

        1.多面體的結(jié)構(gòu)特征

        (1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。

        正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。

        (2)棱錐的底面是任意多邊形,側(cè)面是有一個公共頂點的三角形。

        正棱錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。

        (3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

        2.旋轉(zhuǎn)體的結(jié)構(gòu)特征

        (1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到.

        (2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到.

        (3)圓臺可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。

        (4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。

        3.空間幾何體的三視圖

        空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖。

        三視圖的長度特征:“長對正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實、虛線的畫法。

        4.空間幾何體的直觀圖

        空間幾何體的`直觀圖常用斜二測畫法來畫,基本步驟是:

        (1)畫幾何體的底面

        在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點O,畫直觀圖時,把它們畫成對應(yīng)的x′軸、y′軸,兩軸相交于點O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话搿?/p>

        (2)畫幾何體的高

        在已知圖形中過O點作z軸垂直于xOy平面,在直觀圖中對應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。

      高一數(shù)學(xué)知識點總結(jié)12

        函數(shù)圖象知識歸納

        (1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上.

        (2)畫法

        A、描點法:

        B、圖象變換法

        常用變換方法有三種

        1)平移變換

        2)伸縮變換

        3)對稱變換

        4.高中數(shù)學(xué)函數(shù)區(qū)間的概念

        (1)函數(shù)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

        (2)無窮區(qū)間

        5.映射

        一般地,設(shè)A、B是兩個非空的函數(shù),如果按某一個確定的對應(yīng)法則f,使對于函數(shù)A中的任意一個元素x,在函數(shù)B中都有確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個映射。記作“f(對應(yīng)關(guān)系):A(原象)B(象)”

        對于映射f:A→B來說,則應(yīng)滿足:

        (1)函數(shù)A中的`每一個元素,在函數(shù)B中都有象,并且象是的;

        (2)函數(shù)A中不同的元素,在函數(shù)B中對應(yīng)的象可以是同一個;

        (3)不要求函數(shù)B中的每一個元素在函數(shù)A中都有原象。

        6.高中數(shù)學(xué)函數(shù)之分段函數(shù)

        (1)在定義域的不同部分上有不同的解析表達式的函數(shù)。

        (2)各部分的自變量的取值情況.

        (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

        補充:復(fù)合函數(shù)

        如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù)。

      高一數(shù)學(xué)知識點總結(jié)13

        冪函數(shù)的性質(zhì):

        對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

        首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設(shè)a=—k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

        排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

        排除了為0這種可能,即對于x<0x="">0的所有實數(shù),q不能是偶數(shù);

        排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。

        總結(jié)起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);

        如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。

        在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

        在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

        而只有a為正數(shù),0才進入函數(shù)的值域。

        由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況。

        可以看到:

        (1)所有的圖形都通過(1,1)這點。

       。2)當a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。

       。3)當a大于1時,冪函數(shù)圖形下凹;當a小于1大于0時,冪函數(shù)圖形上凸。

       。4)當a小于0時,a越小,圖形傾斜程度越大。

       。5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

        (6)顯然冪函數(shù)。

        解題方法:換元法

        解數(shù)學(xué)題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法。換元的'實質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復(fù)雜問題簡單化,變得容易處理。

        換元法又稱輔助元素法、變量代換法。通過引進新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結(jié)論聯(lián)系起來。或者變?yōu)槭煜さ男问,把?fù)雜的計算和推證簡化。

        它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應(yīng)用。

        練習(xí)題:

        1、若f(x)=x2—x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。

       。1)求f(log2x)的最小值及對應(yīng)的x值;

        (2)x取何值時,f(log2x)>f(1)且log2[f(x)]

        2、已知函數(shù)f(x)=3x+k(k為常數(shù)),A(—2k,2)是函數(shù)y=f—1(x)圖象上的點。

       。1)求實數(shù)k的值及函數(shù)f—1(x)的解析式;

       。2)將y=f—1(x)的圖象按向量a=(3,0)平移,得到函數(shù)y=g(x)的圖象,若2f—1(x+—3)—g(x)≥1恒成立,試求實數(shù)m的取值范圍。

      高一數(shù)學(xué)知識點總結(jié)14

        1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

        解析式

        頂點坐標

        對稱軸

        y=ax^2

        (0,0)

        x=0

        y=a(x-h)^2

        (h,0)

        x=h

        y=a(x-h)^2+k

        (h,k)

        x=h

        y=ax^2+bx+c

        (-b/2a,[4ac-b^2]/4a)

        x=-b/2a

        當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

        當h<0時,則向左平行移動|h|個單位得到.

        當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

        當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

        當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

        當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

        因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

        2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

        3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.

        4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

        (1)圖象與y軸一定相交,交點坐標為(0,c);

        (2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

        (a≠0)的兩根.這兩點間的距離AB=|x?-x?|

        當△=0.圖象與x軸只有一個交點;

        當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.

        5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

        頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

        6.用待定系數(shù)法求二次函數(shù)的.解析式

        (1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應(yīng)值時,可設(shè)解析式為一般形式:

        y=ax^2+bx+c(a≠0).

        (2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設(shè)解析式為頂點式:y=a(x-h)^2+k(a≠0).

        (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

        7.二次函數(shù)知識很容易與其它知識綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).

      高一數(shù)學(xué)知識點總結(jié)15

        一:函數(shù)模型及其應(yīng)用

        本節(jié)主要包括函數(shù)的模型、函數(shù)的應(yīng)用等知識點。主要是理解函數(shù)解應(yīng)用題的一般步驟靈活利用函數(shù)解答實際應(yīng)用題。

        1、常見的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對數(shù)函數(shù)模型、分段函數(shù)模型等。

        2、用函數(shù)解應(yīng)用題的基本步驟是:

       。1)閱讀并且理解題意。(關(guān)鍵是數(shù)據(jù)、字母的實際意義);

        (2)設(shè)量建模;

        (3)求解函數(shù)模型;

        (4)簡要回答實際問題。

        常見考法:

        本節(jié)知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數(shù)和較復(fù)雜的函數(shù)的最值等問題,屬于拔高題,難度較大。

        誤區(qū)提醒:

        1、求解應(yīng)用性問題時,不僅要考慮函數(shù)本身的定義域,還要結(jié)合實際問題理解自變量的取值范圍。

        2、求解應(yīng)用性問題時,首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,建立相應(yīng)的數(shù)學(xué)模型。

        【典型例題】

        例1:

       。1)某種儲蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數(shù)x之間的函數(shù)關(guān)系式,并計算5個月后的本息和(不計復(fù)利)。

       。2)按復(fù)利計算利息的一種儲蓄,本金為a元,每期利率為r,設(shè)本利和為y,存期為x,寫出本利和y隨存期x變化的函數(shù)式。如果存入本金1000元,每期利率2。25%,試計算5期后的本利和是多少?解:(1)利息=本金×月利率×月數(shù)。y=100+100×0。36%·x=100+0。36x,當x=5時,y=101。8,∴5個月后的本息和為101。8元。

        例2:

        某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的'利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬元)

       。1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式。

       。2)該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能是企業(yè)獲得利潤,其利潤約為多少萬元。(精確到1萬元)。

      【高一數(shù)學(xué)知識點總結(jié)】相關(guān)文章:

      高一數(shù)學(xué)函數(shù)知識點總結(jié)12-01

      高一數(shù)學(xué)知識點總結(jié)11-19

      高一數(shù)學(xué)必考知識點總結(jié)10-18

      高一數(shù)學(xué)知識點總結(jié)09-09

      高一數(shù)學(xué)知識點總結(jié)范文12-06

      高一數(shù)學(xué)易錯知識點總結(jié)11-23

      高一數(shù)學(xué)知識點總結(jié)歸納09-08

      高一數(shù)學(xué)知識點總結(jié)15篇11-28

      高一數(shù)學(xué)必修一知識點總結(jié)歸納10-09