久久综合丝袜日本网手机版,日韩欧美中文字幕在线三区,亚洲精品国产品国语在线,极品在线观看视频婷婷

      <small id="aebxz"><menu id="aebxz"></menu></small>
    1. 初中數(shù)學教學設計

      時間:2024-01-03 12:15:09 設計 我要投稿

      初中數(shù)學教學設計

        作為一名優(yōu)秀的教育工作者,總歸要編寫教學設計,借助教學設計可以更好地組織教學活動。優(yōu)秀的教學設計都具備一些什么特點呢?下面是小編為大家收集的初中數(shù)學教學設計,希望對大家有所幫助。

      初中數(shù)學教學設計

      初中數(shù)學教學設計1

        一、 教學目標

        1、 知識與技能目標

        掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。

        2、 能力與過程目標

        經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學生觀察、歸納、猜測、驗證等能力。

        3、 情感與態(tài)度目標

        通過學生自己探索出法則,讓學生獲得成功的喜悅。

        二、 教學重點、難點

        重點:運用有理數(shù)乘法法則正確進行計算。

        難點:有理數(shù)乘法法則的'探索過程,符號法則及對法則的理解。

        三、 教學過程

        1、 創(chuàng)設問題情景,激發(fā)學生的求知欲望,導入新課。

        教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?

        學生:26米。

        教師:能寫出算式嗎?學生:……

        教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題

        2、 小組探索、歸納法則

       。1)教師出示以下問題,學生以組為單位探索。

        以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。

       、 2 ×3

        2看作向東運動2米,×3看作向原方向運動3次。

        結(jié)果:向 運動 米

        2 ×3=

        ② -2 ×3

        -2看作向西運動2米,×3看作向原方向運動3次。

        結(jié)果:向 運動 米

        -2 ×3=

        ③ 2 ×(-3)

        2看作向東運動2米,×(-3)看作向反方向運動3次。

        結(jié)果:向 運動 米

        2 ×(-3)=

       、 (-2) ×(-3)

        -2看作向西運動2米,×(-3)看作向反方向運動3次。

        結(jié)果:向 運動 米

       。-2) ×(-3)=

       。2)學生歸納法則

        ①符號:在上述4個式子中,我們只看符號,有什么規(guī)律?

       。+)×(+)=( ) 同號得

       。-)×(+)=( ) 異號得

       。+)×(-)=( ) 異號得

        (-)×(-)=( ) 同號得

       、诜e的絕對值等于 。

        ③任何數(shù)與零相乘,積仍為 。

       。3)師生共同用文字敘述有理數(shù)乘法法則。

        3、 運用法則計算,鞏固法則。

       。1)教師按課本P75 例1板書,要求學生述說每一步理由。

       。2)引導學生觀察、分析例子中兩因數(shù)的關系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。

       。3)學生做練習,教師評析。

        (4)教師引導學生做例題,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結(jié)出多因數(shù)相乘的符號法則。

      初中數(shù)學教學設計2

        課題:12.3等腰三角形(第一課時)

        教學內(nèi)容:新人教版八年級上冊十二章第三節(jié)等腰三角形的第一課時

        任課教師:東灣中學李曉偉

        設計理念:

        教學的實質(zhì)是以教材中提供的素材或?qū)嶋H生活中的一些問題為載體,通過一系列探究互動過程,滲透分類討論、數(shù)形結(jié)合和方程的思想方法,達到學生知識的構(gòu)建、能力的培養(yǎng)、情感的陶冶、意識的創(chuàng)新。

        ㈠教材的地位和作用分析

        等腰三角形是新人教版八年級上冊十二章第三節(jié)等腰三角形的第一課時的內(nèi)容。本節(jié)課是在前面學習了三角形的有關概念及性質(zhì)、軸對稱變換、全等三角形、垂直平分線和尺規(guī)作圖的基礎上,研究等腰三角形的定義及其重要性質(zhì),它既是前面所學知識的延伸,也是后面直角三角形、等邊三角形的知識的重要儲備,我們常常利用它證明角相等、線段相等、兩直線垂直,因此本節(jié)課具有承上啟下的重要作用。

        另外,本堂課通過“活動探究”、“觀察—猜想—證明”等途徑,進一步培養(yǎng)學生的動手能力、觀察能力、分析能力和邏輯推理能力,因此,本堂課無論在知識上,還是在對學生能力的培養(yǎng)及情感教育等方面都有著十分重要的作用。

        ㈡教學內(nèi)容的分析

        本堂課是等腰三角形的第一堂課,在認識等腰三角形的基礎上著重介紹“等腰三角形的性質(zhì)”。在教學設計的過程中,通過展示我國今年舉辦的精彩絕倫的盛會—上海世博會圖片中的等腰三角形,結(jié)合云南豐富的文化資源,讓學生感知生活中處處有數(shù)學,感受圖形的和諧美、對稱美;通過學生感興趣的數(shù)學情景引入等腰三角形定義,提高學生的學習樂趣;讓學生通過動手剪等腰三角形、對折等腰三角形等活動,探究發(fā)現(xiàn)等腰三角形的性質(zhì),經(jīng)歷知識的“再發(fā)現(xiàn)”過程。在探究活動的過程中發(fā)展創(chuàng)新思維能力,改變學生的學習方式。在發(fā)現(xiàn)等腰三角形的性質(zhì)的基礎上,再經(jīng)過推理證明等腰三角形的性質(zhì),使得推理證明成為學生觀察、實驗、探究得出結(jié)論的自然延伸,有機地將等腰三角形的認識與等腰三角形的性質(zhì)的證明結(jié)合起來,從中發(fā)展學生推理能力。

        在例題的選取上,注重聯(lián)系實際,激發(fā)學生學習興趣,讓學生主動用數(shù)學知識解決實際問題,同時滲透分類討論、數(shù)形結(jié)合和方程的數(shù)學思想方法,讓學生形成自我的數(shù)學思維和能力,發(fā)展學生應用數(shù)學的意識。

        二、目標及其解析

        ㈠教學目標:

        知識技能:

        1.了解等腰三角形的概念,認識等腰三角形是軸對稱圖形;2.經(jīng)歷探究等腰三角形性質(zhì)的過程,理解等腰三角形的'性質(zhì)的證明;

        3.掌握等腰三角形的性質(zhì),能運用等腰三角形的性質(zhì)解決生活中簡單的實際問題。

        數(shù)學思考:

        1.經(jīng)歷“觀察?實驗?猜想?論證”的過程,發(fā)展學生幾何直觀;

        2.經(jīng)歷證明等腰三角形的性質(zhì)的過程,體會證明的必要性,發(fā)展合情推理能力和初步的演繹推理能力.

        解決問題:

        1.能運用等腰三角形的性質(zhì)解決生活中的實際問題,發(fā)展數(shù)學的應用能力,獲得解決問題的經(jīng)驗;

        2.在小組活動和探究過程中,學會與人合作,體會與他人合作的重要性.

        情感態(tài)度:

        1.經(jīng)歷“觀察?實驗?猜想?論證”的過程,體驗數(shù)學活動充滿著探究性和創(chuàng)造性,感受證明的必要性、證明過程的嚴謹性以及結(jié)論的確定性,并有克服困難和運用知識解決問題的成功體驗,建立學好數(shù)學的自信心;

        2.經(jīng)歷運用等腰三角形解決實際問題的過程,認識數(shù)學是解決實際問題和進行交流的重要工具,了解數(shù)學對促進社會進步和發(fā)展人類理性精神的作用;

        3.在獨立思考的基礎上,通過小組合作,積極參與對數(shù)學問題的討論,敢于發(fā)表自己的觀點,并尊重與理解他人的見解,在交流中獲益.

        ㈡教學重點:

        等腰三角形的性質(zhì)及應用。

        ㈢教學難點:

        等腰三角形性質(zhì)的證明。

        ㈣解析

        本堂課是等腰三角形的第一堂課,所以對于本堂課的知識目標的定位,主要考慮如下:1.了解等腰三角形的概念,認識等腰三角形是軸對稱圖形,在本堂課中要達到如下要求:⑴理解等腰三角形的定義,知道等腰三角形的頂角、底角、腰和底邊;⑵知道等腰三角形是軸對稱圖形,它有一條對稱軸,即:頂角角平分線(底邊上的高或底邊上的中線)所在直線;

        2.經(jīng)歷探究等腰三角形性質(zhì)的過程,掌握等腰三角形的性質(zhì)的證明,在課堂中讓學生參與等腰三角形性質(zhì)的探索,鼓勵學生用規(guī)范的數(shù)學言語表述證明過程,發(fā)展學生的數(shù)學語言能力和演繹推理能力,引導學生完成對等腰三角形的性質(zhì)的證明;

        3.會利用等腰三角形的性質(zhì)解決簡單的實際問題,本堂課要達到以下要求:掌握等腰三角形的性質(zhì),會利用等腰三角形的性質(zhì)解決簡單的實際問題。

        三、問題診斷分析

        1.在這堂課中,學生可能遇到的第一個困難是等腰三角形性質(zhì)的發(fā)現(xiàn),特別是等腰三角形頂角的角平分線、底邊上的中線、底邊上的高相互重合這一性質(zhì),解決這一問題教師主要借助等腰三角形對稱性的研究,并引導學生理解“重合”這個詞的涵義。

        2.這堂課學生可能遇到的第二個問題是證明等腰三角形的性質(zhì),這一問題主要有三個原因:第一學生剛接觸幾何證明不久,對數(shù)學語言表達方式還不熟悉;這一困難,并不是一堂課就能解決的,而要在以后學習中幫助學生增強數(shù)學語言運用的能力,能有條理地、清晰地闡述自己的觀點。在這堂課中我通過等腰三角形性質(zhì)的證明,鼓勵學生運用規(guī)范的數(shù)學語言來表述,使學生數(shù)學語言能力和演繹推理能力得到提升;第二是添加輔助線的問題,這也是學生在證明中的一個難點。要解決這一問題,我借助等腰三角形是軸對稱圖形,通過研究等腰三角形的對稱軸,讓學生理解三種添加輔助線的方法,即作頂角角平分線、底邊上的高或底邊上的中線;第三是證明等腰三角形頂角角平分線、底邊上的中線、底邊上的高互相重合這一性質(zhì),要突破這一難點,我采用先證明等腰三角形兩底角相等這一性質(zhì),為學生搭一個臺階,更好地解決這個難點。

        3.這堂課中學生可能遇到的第三個問題是對等腰三角形的性質(zhì)的應用,特別是等腰三角形頂角的角平分線、底邊上的中線、底邊上的高相互重合這一性質(zhì)的應用;所以我在設計

        課堂練習時,注重數(shù)學知識與生活實際的聯(lián)系,提高學生數(shù)學學習的興趣,讓學生主動運用數(shù)學知識解決實際問題,并通過練習滲透分類討論、數(shù)形結(jié)合和方程的數(shù)學思想方法,讓學生形成自我的數(shù)學思維和能力,發(fā)展學生應用數(shù)學的意識。

        四、教法、學法:

        教法:

        常言道:“教必有法,教無定法”。所以我針對八年級學生的心理特點和認知能力水平,大膽應用生活中的素材,并作了精心的安排,充分體現(xiàn)數(shù)學是源于實踐又運用于生活。因此,本堂課的教學中,我以學生為主體,讓學生積極思維,勇于探索,主動地獲取知識。同時,采用了現(xiàn)代化教學技術,激發(fā)學生的學習興趣,使整個課堂“活”起來,提高課堂效率。本堂課以生活中的一些例子為中心,讓學生親自嘗試,接受問題的挑戰(zhàn),充分展示自己的觀點和見解,給學生創(chuàng)設一個寬松愉快的學習氛圍,讓學生體驗成功的快樂,為終身學習和發(fā)展打打下堅實的基礎。

        本堂課的設計是以課程標準和教材為依據(jù),采用發(fā)現(xiàn)式教學。遵循因材施教的原則,堅持以學生為主體,充分發(fā)揮學生的主觀能動性。教學過程中,注重學生探究能力的培養(yǎng)。還課堂給學生,讓學生去親身體驗知識的產(chǎn)生過程,拓展學生的創(chuàng)造性思維。同時,注意加強對學生的啟發(fā)和引導,鼓勵培養(yǎng)學生大膽猜想,小心求證的科學研究的思想。

        學法:

        學生都渴望與他人交流,合作探究可使學生感受到合作的重要和團隊的精神力量,增強集體意識,所以本課采用小組合作的學習方式,讓學生遵循“情景問題?實踐探究?證明結(jié)論?解決實際問題”的主線進行學習。讓學生從活動中去觀察、探索、歸納知識,沿著知識發(fā)生,發(fā)展的脈絡,學生經(jīng)過自己親身的實踐活動,形成自己的經(jīng)驗,產(chǎn)生對結(jié)論的感知,實現(xiàn)對知識意義的主動構(gòu)建。這不僅讓學生對所學內(nèi)容留下了深刻的印象,而且能力得到培養(yǎng),素質(zhì)得以提高,充分地調(diào)動學生學習的熱情,讓學生學會自主學習,學會探索問題的方法。

        五、教學支持條件分析

        在本堂課中,準備利用長方形紙片、剪刀、圓規(guī)和直尺等工具,剪出等腰三角形,利用等腰三角形,通過對折、多媒體動畫演示等方法發(fā)現(xiàn)等腰三角形的性質(zhì),并且借助多媒體信息技術與實際動手操作加強對所學知識的理解和運用。

        六、教學基本流程

        七、教學過程設計

      初中數(shù)學教學設計3

        課題

        正比例函數(shù)

        一 教學目標

        1.通過案例理解正比例函數(shù),能列出正比例函數(shù)關系式 2.教會學生應用正比例函數(shù)解決生活實際問題的能力

        二 教學重點

        理解正比例函數(shù)的概念

        三 教學難點

        利用正比例函數(shù)解決生活實際問題

        四 教學過程

        【提出問題】

        《阿甘正傳》是一部勵志影片。片中阿甘曾跑步繞美國數(shù)圈,假設他從德州到加州行進了21000千米,耗費了他150天時間。

        (1) 阿甘大約平均每天跑步多少千米?

        (2) 阿甘的行程y(km)與時間x(天)之間有什么關系?

       。3) 阿甘一個月(30天)的行程是多少千米?

        【生】 列算式回答 【師】 點評總結(jié)

        2.寫出下列變量間的函數(shù)表達式

       。1) 正方形的周長l和半徑r之間的`關系

        【進一步抽象問題讓學生思考】

       。2) 大米每千克四元,則售價y元與數(shù)量x(kg)的函數(shù)關系式是什么?

       。3) 下列函數(shù)關系式有什么共同點?(小組合作)

        【分析共同點和不同點,找出規(guī)律】 (1) y=200x

        (2) l=2∏r (3) m=7.8V 【生回答,師點評】 【引入新課】

        1.正比例函數(shù)的概念:

        一般地,形如y=kx (k≠0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù).【板書概念,引導學生分析正比例函數(shù)的定義】

        2 【例題講解】

        例1 在同一坐標系里,畫出下列函數(shù)的圖像: y=0.5x y=x y=3x 解: 【略】

        【掌握函數(shù)圖像的畫法:列表,描點,連線】 3.練習

       。1)已知正比例函數(shù)y=kx.當 x=3 時 y=6 。求 k的值

        (2) 一種筆記本每本的單價為3元。則銷售金額y元與銷售量x之間的關系式是怎樣的? 當銷售金額為360元時,則售出了多少本這種筆記本?

        四 小結(jié)

        五 課外作業(yè)

        【反思】

        由于函數(shù)的概念比較抽象,學生不容易理解。而理解函數(shù)的概念是教學的重點。這節(jié)課首先通過實例,回顧函數(shù)的概念,其次抽象提出正比例函數(shù)關系式,由學生觀察得到特點,然后引出正比例函數(shù)的概念和特點,再通過練習加以鞏固,最后通過小組討論利用正比例函數(shù)解決生活中的問題。

      初中數(shù)學教學設計4

        1、實驗主題:平面圖形的密鋪知識在生活中有著廣泛的應用,其中最典型最常見的就是鋪地板。其特點是使用的基本圖形簡單,構(gòu)造的圖案美觀,隨處可見。符合初中生的認知水平,能夠吸引初中生的興趣,具有說服力。所以本節(jié)課,我們從生活中的“鋪地板”入手,研究其中蘊含的平面圖形的密鋪知識。

        在《新課程標準》中對圖形的密鋪作出明確的要求:知道任意一個三角形、四邊形或正六邊形可以圖形的密鋪,并能運用這幾種圖形進行簡單的圖形的密鋪設計。而平面圖形的密鋪知識在生活中也有著廣泛的應用,其中最典型最常見的就是鋪地板。其特點是使用的基本圖形簡單,構(gòu)造的圖案美觀,隨處可見。符合初中生的認知水平,能夠吸引初中生的興趣,具有說服力。

        所以本節(jié)課,從生活中的“鋪地板”入手,研究其中蘊含的平面圖形的密鋪知識。試圖通過研究用一種正多邊形進行鋪地板的條件,使學生了解平面圖形的密鋪的含義,能夠綜合應用多邊形內(nèi)角和知識解決平面圖形的密鋪問題,力圖培養(yǎng)學生的動手能力、探究能力、問題意識和合作意識,體會數(shù)形結(jié)合的數(shù)學思想以及從特殊到一般的數(shù)學方法。

        此外,由用一種正多邊形鋪地板可以延伸到對用兩種正多邊形進行鋪地板,用三種正多邊形進行鋪地板的思考和研究,也可以拓展到對用任意三角形和任意四邊形進行鋪地板的研究。從深度和廣度上都有進一步探究的空間。

        2、實驗目的“課題學習”作為初中數(shù)學四大領域之一,是新課程標準的一大特色。是在教師的指導下,以問題為核心、以問題解決為目標開展的探究式學習活動。在初中階段,通過一些具有挑戰(zhàn)性的研究課題,讓學生獲得初步的研究經(jīng)驗,發(fā)展一定的研究能力。

        七年級學生的自我意識、好奇心、表現(xiàn)欲和認知能力都處在上升的階段。這一時期,對培養(yǎng)學生的學習興趣、動手能力和思考能力至關重要,也是預防厭學情緒的關鍵時期。所以,我們可以充分利用如《平面圖形的密鋪》這樣的'課題學習來保護和提升學生學習數(shù)學的熱情和信心,使學生開闊眼界、拓展知識、培養(yǎng)問題意識和創(chuàng)新精神。

        3、實驗準備

        3.1教師集體備課,確定課題學習方案。

        課題學習不僅對于學生來說是一種新的學習方式,對于教師來說也是一次對新的教學方式的挑戰(zhàn)。怎樣開展初中數(shù)學課題學習課程,怎樣根據(jù)生活實際和教材確定合適的課題,怎樣把握課堂探究的重點,怎樣把握研究的深度和廣度,怎樣挖掘平面圖形的密鋪的內(nèi)涵。僅憑一個人的力量是有限的。所以,在開展課題學習之前,備課組的老師們通過進一步學習相關的理論,上網(wǎng)查找資料,研討,對課題學習及平面圖形的密鋪有了更深的認識,共同制定出本節(jié)課題學習的方案。

        3.2操作材料準備,探究活動報告、多媒體課件制作。

        操作活動中需要用到邊長為5cm的正三角形、正四邊形、正五邊形、正六邊形、正八邊形、正十邊形若干個。如果讓學生制作會遇到工作量大、耗時長、誤差大、不可重復使用等問題,增加學生負擔,影響拼接效果。經(jīng)集體備課決定由學校統(tǒng)一制作,作為校本教具使用。既為學生減輕了負擔,又保證了操作活動中拼接圖形的效果。

        多媒體課件和探究活動報告由教師制作。

        3.3成立課題學習小組,明確課題學習任務。

        將全班分成6個小組,每組8人。其中數(shù)學思維好中差搭配,男女搭配,內(nèi)向性格與外向性格搭配。選定組長,由組長組織本小組開展實驗操作、自主探究活動。

        3.4搜集用地板磚鋪成的地板圖片。

        由小組長組織本小組的同學盡可能多地收集生活中的地板圖案。

        4、實驗的內(nèi)容與步驟

        4.1創(chuàng)設情境,引出課題。(2分鐘)

        教師用多媒體展示生活中的地板圖案,并提出問題:你見過的地板磚都有哪些形狀?看到這些形狀你有沒有產(chǎn)生過問題?設計意圖:培養(yǎng)學生的問題意識。

        學生觀察圖形,思考作答。

        引出今天研究的課題:鋪地板中的數(shù)學。

        4.2動手操作,自主探究。(15分鐘)

        4.2.1讓學生觀察教師所給材料的特點:

       、俣际钦噙呅

       、谶呴L相同

       、圻厰(shù)相同或不同

        ④邊數(shù)不同的正多邊形每一個內(nèi)角的度數(shù)不同

       、葸厰(shù)相同的多邊形形狀大小完全相同。

        設計意圖:讓學生了解原始材料的數(shù)學特征,為下面探究用一種正多邊形進行鋪地板的條件做準備。

        4.2.2學生動手操作,嘗試用一種正多邊形進行拼接,思考討論用一種正多邊形進行鋪地板需要滿足的條件。

        4.2.3填寫探究報告。制度大全,為您編輯,與引用請。

        注:對于探究能力較強探究速度較快的小組,可以建議他們利用剩余的時間繼續(xù)探究用多種正多邊形鋪地板的條件。

        4.3交流互動,探討課題。(10分鐘)

        每組選一個代表,說明本組的探究過程,展示探究成果。其組的成員可以進行補充或提出自己的疑問。最終得出用一種正多邊形進行鋪地板的條件。

        4.4提出問題,深化課題。(10分鐘)

        將“用一種正多邊形進行鋪地板”的問題研究清楚后,鼓勵學生繼續(xù)思考,提出對繼續(xù)探究有價值的問題:如通過改變正多邊形的種數(shù)可繼續(xù)研究用兩種、三種、甚者用n種正多邊形進行鋪地板的情形,體會從特殊到一般的數(shù)學思想,挖掘研究的深度。通過改變多邊形的形狀可繼續(xù)研究用任意的三角形、任意的四邊形進行鋪地板的情形,拓寬研究的廣度。

        教師將學生的問題記錄下來,快速分類。有的可以當堂解決,有的可以放到課后繼續(xù)探究。

        4.5歸納提煉,小結(jié)課題(3分鐘)

        充分讓學生暢所欲言談體會,教師做簡練的評價,順勢給出平面圖形的密鋪的概念,并為課后撰寫數(shù)學小論文提供適合學生認知水平和能力的題目。

        如:

       、賹τ靡环N正多邊形進行平面圖形的密鋪的研究。

       、趯τ脙煞N正多邊形進行平面圖形的密鋪的研究。

       、蹖τ枚喾N正多邊形進行平面圖形的密鋪的研究。

        ④對用任意多邊形進行平面圖形的密鋪的研究。

        5、課后結(jié)題階段

        5.1將課堂探究的成果進一步整理,對自己有興趣的問題作進一步的探究。

        5.2上網(wǎng)查找撰寫論文的一般形式和方法。

        5.3根據(jù)探究結(jié)果撰寫數(shù)學小論文。

        6、課題學習成果:

        關于圖形的密鋪知識的數(shù)學小論文

        7、設計說明

        創(chuàng)設情境,引出課題:給學生展示生活中的圖片,希望能夠使學生認識生活中的數(shù)學,激發(fā)學生學習的興趣和動機,培養(yǎng)學生的問題意識。

      初中數(shù)學教學設計5

        一、教學目標:

        1.理解二元一次方程及二元一次方程的解的概念;

        2.學會求出某二元一次方程的幾個解和檢驗某對數(shù)值是否為二元一次方程的解;

        3.學會把二元一次方程中的一個未知數(shù)用另一個未知數(shù)的一次式來表示;

        4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育.

        二、教學重點、難點:

        重點:二元一次方程的意義及二元一次方程的解的概念.

        難點:把一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程.

        三、教學方法與教學手段:

        通過與一元一次方程的比較,加強學生的類比的思想方法; 通過“合作學習”,使學生認識數(shù)學是根據(jù)實際的需要而產(chǎn)生發(fā)展的觀點.

        四、教學過程:

        1.情景導入:

        新聞鏈接:桐鄉(xiāng)70歲以上老人可領取生活補助,

        得到方程:80a+150b=902 880.

        2.新課教學:

        引導學生觀察方程80a+150b=902 880與一元一次方程有異同?

        得出二元一次方程的概念:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1次的方程叫做二元一次方程.

        做一做:

       。1)根據(jù)題意列出方程:

       、傩∶魅タ赐棠蹋I了5 kg蘋果和3 kg梨共花去23元,分別求蘋果和梨的單價.設蘋果的單價x元/kg , 梨的單價y元/kg ;

       、谠诟咚俟飞希惠v轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米,如果設轎車的速度是a千米/小時,卡車的速度是b千米/小時,可得方程: .

       。2)課本P80練習2. 判定哪些式子是二元一次方程方程.

        合作學習:

        活動背景愛心滿人間——記求是中學“學雷鋒、關愛老人”志愿者活動.

        問題:參加活動的36名志愿者,分為勞動組和文藝組,其中勞動組每組3人,文藝組每組6人.

        團支書擬安排8個勞動組,2個文藝組,單從人數(shù)上考慮,此方案是否可行? 為什么? 把x=8,y=2代入二元一次方程3x+6y=36,看看左右兩邊有沒有相等? 由學生檢驗得出代入方程后,能使方程兩邊相等. 得出二元一次方程的解的概念:使二元一次方程兩邊的值相等的一對未知數(shù)的值叫做二元一次方程的'一個解.

        并提出注意二元一次方程解的書寫方法.

        3.合作學習:

        給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數(shù))的值,女同學馬上給出對應的x的值; 接下來男女同學互換.(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法.提問:給出x的值,計算y的值時,y的系數(shù)為多少時,計算y最為簡便?

        出示例題:已知二元一次方程 x+2y=8.

        (1)用關于y的代數(shù)式表示x;

       。2)用關于x的代數(shù)式表示y;

       。3)求當x= 2,0,-3時,對應的y的值,并寫出方程x+2y=8的三個解.

       。ó斢煤瑇的一次式來表示y后,再請同學做游戲,讓同學體會一下計算的速度是否要快)

        4.課堂練習:

        (1)已知:5xm-2yn=4是二元一次方程,則m+n=;

        (2)二元一次方程2x-y=3中,方程可變形為y= 當x=2時,y= ;

        5.你能解決嗎?

        小紅到郵局給遠在農(nóng)村的爺爺寄掛號信,需要郵資3元8角.小紅有票額為6角和8角的郵票若干張,問各需要多少張這兩種面額的郵票?說說你的方案.

        6.課堂小結(jié):

        (1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);

        (2)二元一次方程解的不定性和相關性;

        (3)會把二元一次方程化為用一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式.

        7.布置作業(yè)(1)教材P82; (2)作業(yè)本.

        教學設計意圖:

        依照課程標準,通過分析教材中教學情境設計和例習題安排的意圖,在此基礎上依據(jù)學生實際,制訂了本堂課的教學目標,教學重點和難點,課堂教學的設計始終圍繞這教學重點和難點展開.

        在充分理解教材編寫意圖、教學要求和教學理念的基礎上,根據(jù)學生實際,從學生的已有經(jīng)驗出發(fā),創(chuàng)設了教學情境:關心老人,突出情感主線,并貫穿整個教學. 并對教學

        內(nèi)容進行適當?shù)闹亟M、補充和加工等,創(chuàng)造性地使用了教材. 所選擇的例習題都體現(xiàn)實際問題數(shù)學化的思想,讓學生感受到數(shù)學的魅力. 這兩個方面的設計貫穿整堂課,把知識內(nèi)容和情感體驗自然連貫起來.

        其次,在教學過程設計中,體現(xiàn)了讓學生展示解決問題的思維過程,通過幾個合作學習,激發(fā)學生主動去接觸問題,從而達到解決問題的目的. 重視學生學習過程中的自我評價和生生間的相互評價,關注學生對解題思路回顧能力的培養(yǎng).

        二元一次方程概念的教學中,通過與一元一次方程的類比的方法,使得學生加深印象. 在突破難點的設計上,通過游戲的形式激發(fā)學生的學習興趣,并在選題時,通過降低例題的難度,使學生迅速掌握用關于一個未知數(shù)的代數(shù)式表示另一個字母的方法,體會運用這種方法的可使求二元一次方程求解更簡便.

      初中數(shù)學教學設計6

        [教學目標]

        1.會說出怎樣的兩個圖形是全等形,并會用符號語言表示兩個三角形全等。

        2.知道全等三角形的有關概念,會在全等三角形中正確地找出對應頂點、對應邊、對應角。

        3.會說出全等三角形的對應邊、對應角相等的性質(zhì)。

        此外,通過把兩個重合的三角形變換其中一個的位置,使它們呈現(xiàn)各種不同位置的活動,讓學生從中了解并體會圖形變換的思想,逐步培養(yǎng)學生

        動態(tài)的研究幾何圖形的意思。

        [引導性材料]

        我們身邊經(jīng)?吹"一模一樣"的圖形,比如同一版面的記念郵票,同一版面的人民幣、用兩張紙疊在一起剪出的兩張窗花等,請大家舉出這類圖形的例子。

        說明:讓學生在舉出實際例子以及對所舉例子的辨析中獲得對全等圖形盡可能多的精確的感知。

        [教學設計]

        問題1:幾何中,我們把上述所例舉的"一模一樣"的圖形叫做"全等形",以下是描述全等形的三種不同的說法,你認為哪種說法是恰當?shù)?(l)形狀相同的兩個圖形叫全等形。

        (2)大小相等的兩個圖形叫全等形。

        (3)能夠完全重合的兩個圖形叫全等形。

        (學生閱讀課本第21頁,全等三角形的有關概念、全等三解形的表示方法。)操作和觀察(學生用兩塊透明塑料片疊合在一起,任意剪兩個全等的三角形,教師制作兩個全等三角形的復合投影片演示。)(1)將重合的兩塊全等三角形塑料片中的一個沿著一邊所在的直線移動,觀察移動過程中這兩個三角形有哪幾種不同位置?畫出這兩個全等三角形不同位置的組合圖形。

        (2)圖是上述移動過程中的兩個全等三角形組合的圖形,說出它們的對應頂點、對應邊、對應角。

        (3)將重合的兩塊三角形塑料片,以一邊所在的直線為軸,把其中一個三角形翻折180,請你畫出翻折后的兩個全等三角形組合的圖形。

        (4)將兩塊全等的三角形塑料片拼合成如圖中的圖形,并指出它們的對應頂點、對應邊、對應角。

        [小結(jié)]

        1.識別全等三角形的對應邊、對應角的關鍵是正確識別它們的對應頂點。

        2.用全等三變換的方法觀察圖形,有助于正確、迅速的.從復雜圖形中識別出全等三角形。

        [作業(yè)]課本組第2、3、4題。

        初中數(shù)學實踐課教案設計三一、教材分析本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(六三學制)七年級下冊第七章第三節(jié)多邊形內(nèi)角和。

        二、教學目標1、知識目標:了解多邊形內(nèi)角和公式。

        2、數(shù)學思考:通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。

        3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。

        4、情感態(tài)度目標:通過猜想、推理活動感受數(shù)學活動充滿著探索以及

        數(shù)學結(jié)論的確定性,提高學生學習熱情。

        三、教學重、難點重點:探索多邊形內(nèi)角和。

        難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。

        四、教學方法:引導發(fā)現(xiàn)法、討論法五、教具、學具教具:多媒體課件學具:三角板、量角器六、教學媒體:大屏幕、實物投影七、教學過程:

        (一)創(chuàng)設情境,設疑激思師:大家都知道三角形的內(nèi)角和是180o,那么四邊形的內(nèi)角和,你知道嗎?活動一:探究四邊形內(nèi)角和。

        在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。

        方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360o。

        方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360o。

        接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。

        師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?

        活動二:探究五邊形、六邊形、十邊形的內(nèi)角和。

        學生先獨立思考每個問題再分組討論。

        關注:(1)學生能否類比四邊形的方式解決問題得出正確的結(jié)論。

        (2)學生能否采用不同的方法。

        學生分組討論后進行交流(五邊形的內(nèi)角和)方法1:把五邊形分成三個三角形,3個180o的和是540o。

        方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180o的和減去一個周角360o。結(jié)果得540o。

        方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180o的和減去一個平角180o,結(jié)果得540o。

        方法4:把五邊形分成一個三角形和一個四邊形,然后用180o加上360o,結(jié)果得540o。

        師:你真聰明!做到了學以致用。

        交流后,學生運用幾何畫板演示并驗證得到的方法。

        得到五邊形的內(nèi)角和之后,同學們又認真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720o,十邊形內(nèi)角和是1440o。

        (二)引申思考,培養(yǎng)創(chuàng)新師:通過前面的討論,你能知道多邊形內(nèi)角和嗎?活動三:探究任意多邊形的內(nèi)角和公式。

        思考:(1)多邊形內(nèi)角和與三角形內(nèi)角和的關系?(2)多邊形的邊數(shù)與內(nèi)角和的關系?

        (3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關系?學生結(jié)合思考題進行討論,并把討論后的結(jié)果進行交流。

        發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180o的和,五邊形內(nèi)角和是3個180o的和,六邊形內(nèi)角和是4個180o的和,十邊形內(nèi)角和是8個180o的和。

        發(fā)現(xiàn)2:多邊形的邊數(shù)增加1,內(nèi)角和增加180o。

        發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關系。

        得出結(jié)論:多邊形內(nèi)角和公式:(n-2)180。

        (三)實際應用,優(yōu)勢互補

        1、口答:

        (1)七邊形內(nèi)角和xx

        (2)九邊形內(nèi)角和xx

        (3)十邊形內(nèi)角和xx

        2、搶答:

        (1)一個多邊形的內(nèi)角和等于1260o,它是幾邊形?

        (2)一個多邊形的內(nèi)角和是1440o,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是xx。

        3、討論回答:一個多邊形的內(nèi)角和比四邊形的內(nèi)角和多540o,并且這個多邊形的各個內(nèi)角都相等,這個多邊形每個內(nèi)角等于多少度?(四)概括存儲學生自己歸納總結(jié):

        1、多邊形內(nèi)角和公式

        2、運用轉(zhuǎn)化思想解決數(shù)學問題

        3、用數(shù)形結(jié)合的思想解決問題(五)作業(yè):練習冊第93頁1、2、3

        八、教學反思:

        1、教的轉(zhuǎn)變本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學生自覺探究數(shù)學問題,體驗發(fā)現(xiàn)的樂趣。

        2、學的轉(zhuǎn)變學生的角色從學會轉(zhuǎn)變?yōu)闀䦟W。本節(jié)課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。

        3、課堂氛圍的轉(zhuǎn)變整節(jié)課以"流暢、開放、合作、隱導"為基本特征,教師對學生的思維減少干預,教學過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學生與學生,學生與教師之間以"對話"、"討論"為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。

      初中數(shù)學教學設計7

        新學期已到來,我們又要投入到緊張、繁忙而有序地教育教學工作中,使自己今后的教學工作中能有效地、有序地貫徹新的教育精神,圍繞我校新學期的工作計劃要求制定初中一年級數(shù)學教學設計方案:

        一、教材分析:

        本學期是本年級學生初中學習階段的第二學期、新授課程主要有相交線與平行線、平面直角坐標系、三角形、二元一次方程組、不等式與不等式組、數(shù)據(jù)的收集、現(xiàn)行教材、教學大綱要求學生從身邊的實際問題出發(fā),乘坐觀察、思考、探究、討論、歸納之舟,去探索、發(fā)現(xiàn)數(shù)學的奧妙,用學到的`本領去解決復習鞏固、綜合運用、拓展探索等不同層次的問題、教師在靈活選用現(xiàn)有教材的基礎上,應適度引用新例,把初中數(shù)學各單元的知識明晰化、條理化、規(guī)律化,激勵學生自主、合作、探究學習,培養(yǎng)學習興趣和習慣品質(zhì)、

        二、教學目標:

        本學期的數(shù)學教學要從學生的實際問題出發(fā),積極引導學生觀察、思考、探究、討論、歸納數(shù)學問題,要鼓勵學生去探索、發(fā)現(xiàn)數(shù)學的奧妙,用學到的本領去解決復習鞏固、綜合運用、拓展探索等不同層次的問題、教學中既要注意知識的覆蓋面,關注中考的重點、熱點和難點,又要突出數(shù)學知識在社會、科技中的運用,讓學生在學習、練習中熟記知識要點、考試內(nèi)容,掌握應試技巧和數(shù)學思想方法,提高綜合素質(zhì),培養(yǎng)創(chuàng)新意識和探索能力、在期末考試中力爭生均分87分左右,及格率75%以上,并將低分率控制到10%以下,綜合成績縣前五、

        三、教學措施:

        1、認真鉆研教材,積極捕捉課改信息,盡力倡導自主、合作、探究學習,努力培養(yǎng)學生的學習興趣和個性品質(zhì)、

        2、把握學生思想動態(tài),及時與學生溝通,搞好師生關系、

        3、充分利用課堂教學時間,幫助學生理解教學重難點,訓練考點、熱點,強化記憶,形成能力,提高成績、

        4、改進教學方法,用掛圖,實物創(chuàng)設情景進行教學,力求課堂的多樣化、生活化和開放化,力爭有更多的師生互動、生生互動的機會、

        5、精講多練,在教學新知識的同時,注重舊知識的復習,使所學知識系統(tǒng)化,條理化,讓學生在練習、測試中鞏固提高,減少遺忘、

        6、開辟第二課堂,在不加重學生負擔的前提下,積極引導學生閱讀課外書,促進學生自主、合作,探究學習,培養(yǎng)興趣,提高能力、

        7、加強培優(yōu)補中促差生的個別輔導,因材施教,培養(yǎng)學生的個性特長、特別要多鼓勵后進生,提高他們的學習興趣,培養(yǎng)他們良好的學習習慣:

       。1)課前預習習慣;

       。2)積極思考,主動發(fā)言習慣;

       。3)自主作業(yè)習慣;

       。4)課后復習習慣。

      初中數(shù)學教學設計8

        一、教學設計:

        1 學習方式:

        對于全等三角形的研究,實際是平面幾何中對封閉的兩個圖形關系研究的第一步。它是兩個三角形間最簡單,最常見的關系。它不僅是學習后面知識的基礎,并且是證明線段相等、角相等以及兩線互相垂直、平行的重要依據(jù)。因此必須熟練地掌握全等三角形的判定方法,并且靈活的應用。為了使學生更好地掌握這一部分內(nèi)容,遵循啟發(fā)式教學原則,用設問形式創(chuàng)設問題情景,設計一系列實踐活動,引導學生操作、觀察、探索、交流、發(fā)現(xiàn)、思維,使學生經(jīng)歷從現(xiàn)實世界抽象出幾何模型和運用所學內(nèi)容,解決實際問題的過程,真正把學生放到主體位置。

        2 學習任務分析:

        充分利用教科書提供的素材和活動,鼓勵學生經(jīng)歷觀察、操作、推理、想象等活動,發(fā)展學生的空間觀念,體會分析問題、解決問題的方法,積累數(shù)學活動經(jīng)驗。培養(yǎng)學生有條理的思考,表達和交流的能力,并且在以直觀操作的基礎上,將直觀與簡單推理相結(jié)合,注意學生推理意識的建立和對推理過程的理解,能運用自己的方式有條理的表達推理過程,為以后的證明打下基礎。

        3 學生的認知起點分析:

        學生通過前面的學習已了解了圖形的全等的概念及特征,掌握了全等圖形的`對應邊、對應角的關系,這為探究三角形全等的條件做好了知識上的準備。另外,學生也具備了利用已知條件作三角形的基本作圖能力,這使學生能主動參與本節(jié)課的操作、探究成為可能。

        4 教學目標:

       。1) 學生在教師引導下,積極主動地經(jīng)歷探索三角形全等的條件的過程,體會利用操作、歸納獲得數(shù)學結(jié)論的過程。

       。2) 掌握三角形全等的“邊邊邊”、“邊角邊”、“角邊角”、“角角邊”的判定方法,了解三角形的穩(wěn)定性,能用三角形的全等解決一些實際問題。

       。3) 培養(yǎng)學生的空間觀念,推理能力,發(fā)展有條理地表達能力,積累數(shù)學活動經(jīng)驗。

        5 教學的重點與難點:

        重點:三角形全等條件的探索過程是本節(jié)課的重點。從設置情景提出問題,到動手操作,交流,直至歸納得出結(jié)論,整個過程學生不僅得到了兩個三角形全等的條件,更重要得是經(jīng)歷了知識的形成過程,體會了一種分析問題的方法,積累了數(shù)學活動經(jīng)驗,這將有利于學生更好的理解數(shù)學,應用數(shù)學。難點:三角形全等條件的探索過程,特別是創(chuàng)設出問題后,學生面對開放性問題,要做出全面、正確得分析,并對各種情況進行討論,對初一學生有一定的難度。

        根據(jù)初一學生年齡、生理及心理特征,還不具備獨立系統(tǒng)地推理論證幾何問題的能力,思維受到一定的局限,考慮問題不夠全面,因此要充分發(fā)揮教師的主導作用,適時點撥、引導,盡可能調(diào)動所有學生的積極性、主動性參與到合作探討中來,使學生在與他人的合作交流中獲取新知,并使個性思維得以發(fā)展。

        6 教學過程

        教學步驟

        教師活動

        學生活動

        教學媒體(資源)和教學方式

        復習過渡

        引入新知

        創(chuàng)設情景

        提出問題

        建立模型

        探索發(fā)現(xiàn)

        歸納總結(jié)

        得出新知鞏固運用

        及其推廣

        反思小結(jié)

        提煉規(guī)律

        電腦顯示,帶領學生復習全等三角定義及其性質(zhì)。

        電腦顯示,小明畫了一個三角形,怎樣才能畫一個三角形與他的三角形全等?我們知道全等三角形三條邊

        分別對應相等,三個角分別對應相等,那麼,反之這六個元素分別對應,這樣的兩個三角形一定全等.但是,是否一定需要六個條件呢?條件能否盡可能少嗎?

        對學生分類中出現(xiàn)的問題,予以糾正,對學生提出的解決問題的不同策略,要給予肯定和鼓勵,以滿足多樣化的學生需要,發(fā)展學生個性思維。

      初中數(shù)學教學設計9

        教學目標

        1、知識與技能:

        (1)理解一元一次不等式組及其解集的意義;

       。2)掌握一元一次不等式組的解法。

        2、過程與方法:

       。1)經(jīng)歷通過具體問題抽象出不等式組的過程,培養(yǎng)學生逐步形成分析問題和解決問題的能力。

       。2)經(jīng)歷一元一次不等式組解集的探究過程,培養(yǎng)學生的觀察能力和數(shù)形結(jié)合的思想方法,滲透類比和化歸思想。

        3、情感、態(tài)度與價值觀:

       。1)感受數(shù)形結(jié)合思想在數(shù)學學習中的作用,養(yǎng)成自主探究的良好學習習慣。

       。2)學生在解不等式組的過程中體會用數(shù)學解決問題的直觀美和簡潔美。

        2學情分析

        本節(jié)討論的對象是一元一次不等式組。幾個一元一次不等式合在一起,就得到一元一次不等式組。從組成成員上看,一元一次不等式組是在一元一次不等式基礎上發(fā)展的新概念;從組成形式上看,一元一次不等式組與第八章學習的方程組有類似之處,都是同時滿足幾個數(shù)量關系,所求的都是集合不等式解集的公共部分或幾個方程的公共解。因此,在本節(jié)教學中應注意前面的基礎,讓學生借助對已學知識的認識學習新知識。

        另外,本節(jié)課是在學生學習了一元一次方程、二元一次方程組和一元一次不等式之后的又一次數(shù)學建模思想學習,是今后利用一元一次不等式組解決實際問題的關鍵,是后續(xù)學習一元二次方程、函數(shù)的重要基礎,具有承前啟后的重要作用。另外,在整個學習過程中數(shù)軸起著不可替代的作用,處處滲透著數(shù)形結(jié)合的思想,這種數(shù)形結(jié)合的思想對學生今后學習數(shù)學有著重要的影響。

        3重點難點

        1、教學重點:對一元一次不等式組解集的認識及其解法。

        2、教學難點:對一元一次不等式組解集的認識及確定。

        3、教學關鍵:利用數(shù)軸確定不等式組中各個不等式解集的公共部分。

        4教學過程4.1第一學時教學活動活動1【導入】溫故知新

        教師提問:

        1、什么是一元一次不等式?

        2、什么是一元一次不等式的解集?

        3、如何求一元一次不等式的解集?

        針對性練習:

        (設計意圖:檢驗學生是否理解和掌握一元一次不等式的相關概念,為本節(jié)新課內(nèi)容的學習做好鋪墊。同時對解不等式中的相關要點加以強調(diào):①解不等式中,系數(shù)化為1時不等號的方向是否要改變;②在數(shù)軸上表示解集時“實心圓點”和“空心圓圈”的選擇;③要正確理解利用數(shù)軸表示出來的不等式解集的幾何意義。)

        活動2【講授】創(chuàng)設問題情景,探索新知

        1、問題(課本第127頁):用每分鐘可抽30 t水的抽水機來抽污水管道里積存的污水,估計積存的污水

        超過1 200 t而不足1 500 t,那么將污水抽完所用時間的范圍是什么?

       。ㄔO計意圖:結(jié)合生活實例,讓學生經(jīng)歷通過具體問題抽象出不等式組的過程,即經(jīng)歷知識的拓展過程,讓學生體會到數(shù)學學習的內(nèi)容是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的。)

        2、引導學生找出問題中“積存的污水”需同時滿足的兩個不等關系:

        超過1 200 t和不足1 500 t。

        3、問題1:如何用數(shù)學式子表示這兩個不等關系?

        1)引導學生一起把這個實際問題轉(zhuǎn)換為數(shù)學模型:

        滿足一個不等關系我們可列一個不等式,滿足兩個不等關系可以列出兩個不等式。

        設用x min將污水抽完,則x需同時滿足以下兩個不等式:

        30x>1200, ①

        30x<1500 ②

        2)教師歸納一元一次不等式組的意義:

        由于未知數(shù)x需同時滿足上述兩個不等式,那么類似于方程組,我們把這樣兩個不等式合起來,就組成一個一元一次不等式組。

       。ㄔO計意圖:把實際問題轉(zhuǎn)換為數(shù)學模型,同時讓學生根據(jù)一元一次不等式和二元一次方程組的有關概念來類推一元一次不等式組的有關概念,滲透類比和化歸思想。)

        4、問題2:怎樣確定不等式組中既滿足不等式①同時又滿足不等式②的x的可取值范圍?

        1)教師分析:對于一元一次不等式組來說,組成不等式組的每一個不等式中都只含有一個未知數(shù),

        運用前面解一元一次不等式的知識,我們就能直接求出不等式組中的每一個一元一次不等式的解集。

        2)得到解不等式組的第一個步驟:分別直接求出這兩個不等式的解集。學生自行求解:

         由不等式①,解得x>40

        由不等式②,解得x<50

        3)教師引導學生根據(jù)題意,容易得到:在這兩個解集中,由于未知數(shù)x既要滿足x>40,也要同時滿足x<50,因此x>40和x<50這兩個解集的公共部分,就是不等式組中x可以取值的范圍。

       。ㄔO計意圖:讓學生在教師的引導下探究不等式組的解集及其解法,養(yǎng)成自主探究的良好學習習慣。)

        5、問題3:如何求得這兩個解集的公共部分?

        學生活動:將不等式①和②的解集在同一條數(shù)軸上分別表示出來。

       。ㄔO計意圖:啟發(fā)學生可利用數(shù)軸的直觀性幫助我們尋找這兩個不等式解集的公共部分。)

        教師活動:利用多媒體課件,用三種不同形式表示這兩個解集,幫助學生求得這個公共部分。

       。ㄔO計意圖:結(jié)合介紹利用數(shù)軸確定公共部分的三種不同形式,突破本節(jié)課的難點,培養(yǎng)學生的觀察能力和數(shù)形結(jié)合的思想方法。)

        形式一:用兩種不同顏色表示這兩個解集

        1)通過設置以下幾個問題,要求學生通過觀察、分組討論、取值驗證,自主得出結(jié)論。

       。1)這兩種顏色把數(shù)軸分成幾個部分?

       。2)每一個部分分別表示哪些數(shù)?

       。3) 請每一小組的同學從這幾個部分中各取2~3個數(shù),分別代入兩個不等式中,同時思考:哪部分的數(shù)既滿足不等式①同時又滿足不等式②?

        2)學生通過自主探究、合作交流,得到這3個問題的`正確答案。

        3)得出結(jié)論:

        只有紅色和藍色重疊的部分才既滿足不等式①又同時滿足不等式②。因此,紅色和藍色重疊的部分就是我們要找的x的可取值范圍。

        4)教師提問:兩個不等式解集的界點:即實數(shù)40、50所在的點是否落在紅色和藍色重疊的部分?教師引導學生利用學過的驗證法進行驗證,并得出結(jié)論:兩個界點沒有落在紅色和藍色重疊的部分。

       。ㄔO計意圖:讓學生對一系列的問題進行自主分析和解答,充分調(diào)動學生學習的主動性和積極性。同時在上述過程中,利用不同顏色的直觀性,目的在于能讓學生更清楚地找出不等式①和不等式②解集的公共部分。)

        形式二:利用畫斜線的方式:用兩種不同方向的斜線分別畫出x>40和x<50這兩個部分的解集。

        類似地,引導學生得出結(jié)論:兩個解集的公共部分,就是圖中兩種不同方向斜線重疊的部分,從而得出結(jié)論。

        形式三:結(jié)合課本,利用兩條橫線都經(jīng)過的部分來確定兩個解集的公共部分。

       。ㄔO計意圖:介紹不同的形式,讓學生再一次鮮明、直觀地體會:x的可取值范圍是兩個不等式解集的公共部分;進一步培養(yǎng)學生的觀察能力和數(shù)形結(jié)合的思想方法。)

        6、問題4:如何表示這個可取值范圍?

        教師分析:在數(shù)軸上,未知數(shù)x落在實數(shù)40和50之間。而我們知道,數(shù)軸上的實數(shù),它們從左到右的順序,就是從小到大的順序。因此,我們可將這三個數(shù)先按從小到大的順序書寫出來,再用小于號依次進行連接,記為4040且x<50。

        7、小結(jié)并解決課本問題:原不等式組中x的取值范圍為40

        (設計意圖:首尾呼應,完成了實際問題的研究,通過這個研究過程,讓學生進行感悟、歸納、領會知識的真諦。)

        8、同時,類比一元一次不等式解集的幾何意義,教師再次進行歸納:

        在數(shù)軸上,若在40

        一般地,幾個不等式的解集的公共部分,叫做由它們所組成的不等式組的解集。解不等式組就是求它的解集。

        9、結(jié)合上述學習過程,讓學生和教師一起歸納解一元一次不等式組的步驟:

       。1)分別求出不等式組中各個不等式的解集;

       。2)把這些解集分別在同一條數(shù)軸上表示出來;

        (3)確定各個不等式解集的公共部分;

        (4)寫出不等式組的解集。

       。ㄔO計意圖:及時進行小結(jié),使學生對所學知識更加的系統(tǒng)化。)

      初中數(shù)學教學設計10

        一、教學設計:

        1、學習方式:

        對于全等三角形的研究,實際是平面幾何中對封閉的兩個圖形關系研究的第一步。的關系。它不僅是學習后面知識的基礎,并且是證明線段相等、角相等以及兩線互相垂練地掌握全等三角形的判定方法,并且靈活的應用。為了使學生更好地掌握這一部分內(nèi)形式創(chuàng)設問題情景,設計一系列實踐活動,引導學生操作、觀察、探索、交流、發(fā)現(xiàn)、出幾何模型和運用所學內(nèi)容,解決實際問題的過程,真正把學生放到主體位置。

        2、學習任務分析:

        充分利用教科書提供的素材和活動,鼓勵學生經(jīng)歷觀察、操作、推理、想象等活動問題、解決問題的方法,積累數(shù)學活動經(jīng)驗。培養(yǎng)學生有條理的思考,表達和交流的能將直觀與簡單推理相結(jié)合,注意學生推理意識的建立和對推理過程的理解,能運用自己以后的證明打下基礎。

        3、學生的認知起點分析:

        學生通過前面的學習已了解了圖形的全等的概念及特征,掌握了全等圖形的對應邊全等的條件做好了知識上的準備。另外,學生也具備了利用已知條件作三角形的基本作課的操作、探究成為可能。

        4、教學目標:

       。1)學生在教師引導下,積極主動地經(jīng)歷探索三角形全等的條件的過程,體會利用

       。2)掌握三角形全等的“邊邊邊”、“邊角邊”、“角邊角”、“角角邊”的判定三角形的全等解決一些實際問題。

        (3)培養(yǎng)學生的空間觀念,推理能力,發(fā)展有條理地表達能力,積累數(shù)學活動經(jīng)驗

        5、教學的重點與難點:

        重點:三角形全等條件的探索過程是本節(jié)課的重點。

        從設置情景提出問題,到動手操作,交流,直至歸納得出結(jié)論,整個過程學生不僅得到得是經(jīng)歷了知識的形成過程,體會了一種分析問題的方法,積累了數(shù)學活動經(jīng)驗,這將數(shù)學。

        難點:三角形全等條件的探索過程,特別是創(chuàng)設出問題后,學生面對開放性問題,要情況進行討論,對初一學生有一定的難度。

        根據(jù)初一學生年齡、生理及心理特征,還不具備獨立系統(tǒng)地推理論證幾何問題的能力,夠全面,因此要充分發(fā)揮教師的主導作用,適時點撥、引導,盡可能調(diào)動所有學討中來,使學生在與他人的合作交流中獲取新知,并使個性思維得以發(fā)展。

        6、教學過程(略)

        教學步驟教師活動學生活動教學媒體(資源)和教學方式

       。贰⒎此夹〗Y(jié)

        提煉規(guī)律

        電腦顯示,帶領學生復習全等三角定義及其性質(zhì)。

        電腦顯示,小明畫了一個三角形,怎樣才能畫一個三角形與他的三角形全等?我們知道三個角分別對應相等,那麼,反之這六個元素分別對應,這樣的兩個三角形一定全等.但是能否盡可能少嗎?對學生分類中出現(xiàn)的問題,予以糾正,對學生提出的解決問題的不同策略,要給予肯定和展學生個性思維。

        按照三角形“邊、角”元素進行分類,師生共同歸納得出:

        1、一個條件:一角,一邊

        2、兩個條件:兩角;兩邊;一角一邊

        3、三個條件:三角;三邊;兩角一邊;兩邊一角

        按以上分類順序動腦、動手操作,驗證。教師收集學生的作品,加以比較,得出結(jié)論:只給出一個或兩個條件時,都不能保證所畫出的三角形一定全等。

        下面將研究三個條件下三角形全等的判定。

       。1)已知三角形的三個角分別為40°、60°、80°,畫出這個三角形,并與同伴比學生得出結(jié)論后,再舉例體會一下。舉例說明:

        如老師上課用的三角尺與同學用的三角板三個角分別對應相等,但一個大一個小,很再如同是:等邊三角形,邊長不等,兩個三角形也不全等。等等。

       。2)已知三角形三條邊分別是4cm,5cm,7cm,畫出這個三角形,并與同伴比較是否板演:三邊對應相等的'兩個三角形全等,簡寫為“邊邊邊”或“SSS”。

        由上面的結(jié)論可知:只要三角形三邊的長度確定了,這個三角形的形狀和大小就確實物演示:

        由三根木條釘成的一個三角形框架,它的大小和形狀是固定不變的,三角形的這個性質(zhì)舉例說明該性質(zhì)在生活中的應用

        類比著三角形,讓學生動手操作,研究四邊形、五邊性有無穩(wěn)定性

        圖形的穩(wěn)定性與不穩(wěn)定性在生活中都有其作用,讓學生舉例說明。

        題組練習(略)

        4、(對有能力的學生要求把實際問題抽象成數(shù)學問題,根據(jù)自己的理解寫出推理由,并能說明每一步的根據(jù)。)教師帶領,回顧反思本節(jié)課對知識的研究探索過程,小結(jié)方法及結(jié)論,提煉數(shù)學思想在教師引導下回憶前面知識,為探究新知識作好準備。

        議一議:

        學生分小組進行討論交流。受教師啟發(fā),從最少條件開始考慮,一個條件;兩個條件;三個況漸漸明朗,進行交流予以匯總,歸納。

        想一想:

        對只給一個條件畫三角形,畫出的三角形一定全等嗎?畫一畫:

        按照下面給出的兩個條件做出三角形:(1)三角形的兩個角分別是:30°,50°(2)三角形的兩條邊分別是:4cm,6cm(3)三角形的一個角為30,一條邊為3cm

        剪一剪:

        把所畫的三角形分別剪下來。

        比一比:

        同一條件下作出的三角形與其他同學作的比一比,是否全等。學生重復上面的操作過程,畫一畫,剪一剪,比一比。學生總結(jié)出:三個內(nèi)角對應相等的兩個三角形不一定全等

        學生舉例說明

        學生模仿上面的研究方法,獨立完成操作過程,通過交流,歸納得出結(jié)論。

        鼓勵學生自己舉出實例,體驗數(shù)學在生活中的應用.學生那出準備好的硬紙條,進行實驗,得出結(jié)論:四邊形、五邊形不具穩(wěn)定性。

        學生練習

        學生在教師引導下回顧反思,歸納整理。

        z+z平臺演示

        z+z平臺演示,教師加以分析。學生分組討論,師生互動合作。

        經(jīng)過對各種情況得分析,歸納,總結(jié),對學生滲透分類討論的數(shù)學思想。結(jié)論很顯然只需學生想像即可,z+z平臺輔助直觀演示。學生動手操作,通過實踐、自主探索、交流,獲得新知。

      初中數(shù)學教學設計11

        教育改革的關鍵在于教師觀念的轉(zhuǎn)變,現(xiàn)代教育理論告訴我們:教師的職責現(xiàn)在已經(jīng)越來越少地傳授知識,而是越來越多地鼓勵、思考……將越來越成為一位顧問、一位交流意見的參加者、一位幫助發(fā)現(xiàn)而不是拿出現(xiàn)成真理的人,必須拿出更多的時間和精力去從事那些有效果的和有創(chuàng)造性的活動:互相影響、討論、激勵、了解、鼓舞。這說明了一個道理:教師的地位發(fā)生了根本性的變化,不再僅僅是知識的傳授者,還要確定“以人為本”的觀念,把課堂教學看作自己也是學生人生中的一段激蕩的生命經(jīng)歷,鼓勵、激發(fā)學生去不斷探索,把學生的“發(fā)現(xiàn)”與“創(chuàng)造”視為最有價值的勞動成果,教師與學生平等地對話,與他們共同感悟思潮的跌宕涌動。我想從三個方面談談自己在教學時的一些認識:

        一、聯(lián)系生活、感知數(shù)學

        “數(shù)學課程不僅要考慮數(shù)學自身的特點,而且應遵循學生學習數(shù)學的'心理規(guī)律,強調(diào)從學生已有的生活經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型進行解釋與應用的過程!边@就要求我們遵循學生的思維規(guī)律,在實際問題和數(shù)學模型之間架起一座橋梁,讓學生在不知不覺中走進數(shù)學、感知數(shù)學。數(shù)學來源于生活并服務于生活,主體(學生)在思考問題時,既符合自身的認知規(guī)律,又有直覺洞察、直觀猜想、合理歸納與活動思維過程,有利于提高自己對數(shù)學的認識。

        二、身臨其境,探索規(guī)律

        “數(shù)學教學活動必須建立在學生的認識發(fā)展水平和已有的知識經(jīng)驗上,教師應激發(fā)學生的學習積極性,向?qū)W生提供充分從事數(shù)學活動的機會。

        在教學時教師應根據(jù)知識的內(nèi)在結(jié)構(gòu)和學生的學習規(guī)律,提供現(xiàn)象和問題,創(chuàng)設思維情境,引導學生主動參與,進行觀察、思考、探索。這樣有利于激發(fā)學生解決問題的熱情,提升學生的學習水平。比如在探究一元二次方程的根與系數(shù)的關系時,我們可以按下列步驟來創(chuàng)設情境。

        1.求三個一元二次方程的兩根之和與兩根之積。一般來說學生都是先把方程的根求出來,然后計算,學生可能體會不到什么,此時課堂氣氛比較平穩(wěn)。

        2.求一元二次方程的兩根之和與兩根之積,這時很多學生會感到很繁,怕動手計算,課堂出現(xiàn)沉悶現(xiàn)象。此時教師立即口答出答案,學生就會感覺到很驚奇,為之一振,進而產(chǎn)生疑問:“老師怎么會看出答案?這里會不會有規(guī)律?”課堂出現(xiàn)竊竊私語,激活了學生的思維,活躍了課堂氣氛。

        3.提出問題:你能根據(jù)你開始的計算和老師的結(jié)論觀察出一元二次方程的根與系數(shù)之間的關系嗎?學生們躍躍欲試,開始投入到觀察、思考、探索中去。

        4.提出問題:你敢肯定你所猜測到的結(jié)論是正確的嗎?再一次激發(fā)學生的斗志,使他們敢于說理、敢于證明,給予他們充分展示自己才華的機會。

        三、由點到面,觸類旁通

        復習不是簡單的知識重復,而是一個再認識、再提高的過程,復習中的最大矛盾是時間短、內(nèi)容多、要求高。復習既要做到突出重點、抓住典型,又能在高度概括中深刻揭示知識的內(nèi)在聯(lián)系,讓學生在掌握規(guī)律中理解、記憶、熟練、提高。比如在復習一元二次方程根的判別式和根與系數(shù)的關系時,可以把一元二次方程根的判別式、根與系數(shù)的關系和二次函數(shù)的有關知識相聯(lián)系,根的判別式可以作為判別二次函數(shù)的圖像與x軸的交點個數(shù)的依據(jù):當△>0時,拋物線與x軸有兩個不同的交點;當△<0時,拋物線與x軸沒有交點;當△=0時,拋物線與x軸只有一個交點即頂點。如果拋物線與x軸有兩個不同的交點,用根與系數(shù)的關系可以求拋物線與x軸的兩個交點之間的距離,可以判別拋物線與x軸交點的位置(交點是在坐標原點的左邊還是在坐標原點的右邊)等等。這樣在復習過程中把知識拓一拓、伸一伸,能激起學生思維的火花、學習的積極性,培養(yǎng)學生運用知識提高分析問題和解決問題的能力。

        總之,課堂教學面對的是獨立、有個性、有思維的學生,課堂教學設計應適應學生的發(fā)展,應隨“學情”的變化而變化。課堂教學設計的成效如何,完全取決于教師對教材的理解、對學生情況的了解。只有教師具備“以學生為本”的教學理念,才能一切從學生實際出發(fā)、一切為學生考慮,才能真正做到教學服務于學生,實現(xiàn)“不同的人在數(shù)學上得到不同的發(fā)展”。

      初中數(shù)學教學設計12

        (一)提出問題,導入新課

        1、解二元一次方程組

        問題

        1、母親26歲結(jié)婚,第二年生個兒子,若干年后母親的年齡是兒子年齡到3倍,此時母親的年齡為幾歲?

        解法一:設經(jīng)過x年后,母親的年齡是兒子年齡的3倍。 由題意得

        26+x=3x 解法二:設母親的年齡為x歲。 由題意得

        x=3(x-26)

        (二)精選講例,探求新知

        例

        2、某班有45位學生,共有班費2400元錢,準備給每位學生訂一份報紙。已知《作文報》的訂費為60元/年,《科學報》的訂費為50元/年,則訂閱兩種報紙各多少人?

        鞏固練習 小明和小李兩人進行投籃比賽,規(guī)則:小明投3分球,小李投2分球,兩人共投中20次,經(jīng)計算兩人得分相等,問小李和小明各投中幾個球。

        (三)變式訓練,激活學生思維

        問題

        3、小明和小李兩人進行投籃比賽,小明投3分球,小李投2分球,兩人共投中100次,小明投中率為40%,小明投中率為40%,經(jīng)計算兩人得分相等,問小李和小明各投中幾個球。 問題

        4、已知某電腦公司有A型、B型、C型3種型號的電腦,其價格分別為A型6000元/臺、B型4000元/臺、C型2500元/臺,我校計劃將100500元錢全部用于從該公司購進其中兩種不同型號電腦共36臺,請你設計出幾種不同的'購買方案供學校采用。小紅的方案:她認為可以購進A型和B型電腦,請你判斷小紅提出的方案是否合理,并通過計算說明。

        (四)課堂練習,鞏固新知

        1、A、B兩地相距36千米,甲從A地出發(fā)步行到B地,乙從B地出發(fā)步行到A地,兩人同時出發(fā),4小時候相遇。若6小時后,甲所余路程為乙所余路程的2倍,求甲乙兩人的速度。

        2、某班借來一批圖書,分借給同學閱覽,如果每人借6本,那么會有一個同學沒書可借,如果每人借5本,那么還剩5本書沒人借,問該班有多少人,有多少書。

        (五)拓展

        1、變題訓練問題2中,若學校要購買A、B、C3種型號的電腦,有如何安排?

        2、某中學新建一棟4層的教學大樓,每層樓有8間教室,進、出這棟大樓共有4道門,其中兩道正門大小相同,兩道側(cè)門大小也相同。安全檢查中,對4道門進行測試,當同時開啟一道正門和兩道側(cè)門時,2分鐘內(nèi)可以通過560名學生,當同時開啟一道正門和一道側(cè)門時,4分鐘內(nèi)可以通過800名學生。

        ⑴問平均每分鐘一道正門和一道側(cè)門各可以通過多少名學生。

        ⑵檢查中發(fā)現(xiàn),緊急情況時因?qū)W生擁擠,出門的效率將降低20%,安全檢查規(guī)定,在緊急情況下全大樓的學生應在5分鐘內(nèi)通過這4道門安全撤離。假設這棟大樓每間教師最多有45名學生,問建造的這4道門是否符合安全規(guī)定。

      初中數(shù)學教學設計13

        一、內(nèi)容簡介

        本節(jié)課的主題:通過一系列的探究活動,引導學生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式。

        關鍵信息:

        1、以教材作為出發(fā)點,依據(jù)《數(shù)學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結(jié)論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

        2、用標準的數(shù)學語言得出結(jié)論,使學生感受科學的嚴謹,啟迪學習態(tài)度和方法。

        二、學習者分析:

        1、在學習本課之前應具備的基本知識和技能:

       、偻愴椀亩x。

       、诤喜⑼愴椃▌t

       、鄱囗検匠艘远囗検椒▌t。

        2、學習者對即將學習的內(nèi)容已經(jīng)具備的水平:

        在學習完全平方公式之前,學生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結(jié)出公式的應用方法。

        三、教學/學習目標及其對應的課程標準:

        (一)教學目標:

        1、經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推力能力。

        2、會推導完全平方公式,并能運用公式進行簡單的計算。

        (二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認識有理數(shù)、實數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關系和變化規(guī)律,并能運用代數(shù)式、防城、不等式、函數(shù)等進行描述。

        (三)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。

        (四)情感與態(tài)度:敢于面對數(shù)學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數(shù)學的自信心;并尊重與理解他人的見解;能從交流中獲益。

        四、教育理念和教學方式:

        1、教師是學生學習的組織者、促進者、合學生是學習的主人,在教師指導下主動的、富有個性的學習,用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。

        教學是師生交往、積極互動、共同發(fā)展的過程。當學生迷路的時候,教師不輕易告訴方向,而是引導他怎樣去辨明方向;當學生登山畏懼了的時候,教師不是拖著他走,而是喚起他內(nèi)在的精神動力,鼓勵他不斷向上攀登。

        2、采用“問題情景—探究交流—得出結(jié)論—強化訓練”的模式

        展開教學。

        3、教學評價方式:

        (1)通過課堂觀察,關注學生在觀察、總結(jié)、訓練等活動中的主動參與程度與合作交流意識,及時給與鼓勵、強化、指導和矯正。

        (2)通過判斷和舉例,給學生更多機會,在自然放松的狀態(tài)下,揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學情,調(diào)查教學。

        (3)通過課后訪談和作業(yè)分析,及時查漏補缺,確保達到預期的教學效果。

        五、教學媒體:多媒體

        六、教學和活動過程:

        教學過程設計如下:

        〈一〉、提出問題

        [引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關系嗎?

        (2m+3n)2=_______________,(-2m-3n)2=______________,(2m-3n)2=_______________,(-2m+3n)2=_______________。

        〈二〉、分析問題

        1、[學生回答]分組交流、討論

        (2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

        (1)原式的特點。

        (2)結(jié)果的'項數(shù)特點。

        (3)三項系數(shù)的特點(特別是符號的特點)。

        (4)三項與原多項式中兩個單項式的關系。

        2、[學生回答]總結(jié)完全平方公式的語言描述:

        兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

        兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

        3、[學生回答]完全平方公式的數(shù)學表達式:

        (a+b)2=a2+2ab+b2;

        (a-b)2=a2-2ab+b2.

        〈三〉、運用公式,解決問題

        1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學生的學習積極性)

        (m+n)2=____________,(m-n)2=_______________,(-m+n)2=____________,(-m-n)2=______________,(a+3)2=______________,(-c+5)2=______________,(-7-a)2=______________,()2=______________.

        2、判斷:

        ()①(a-2b)2=a2-2ab+b2

        ()②(2m+n)2=2m2+4mn+n2

        ()③(-n-3m)2=n2-6mn+9m2

        ()④(5a+)2=25a2+5ab+

        ()⑤(5a-)2=5a2-5ab+

        ()⑥(-a-2b)2=(a+2b)2

        ()⑦(2a-4b)2=(4a-2b)2

        ()⑧(-5m+n)2=(-n+5m)2

        3、小試牛刀

       、(x+y)2=______________;②(-y-x)2=_______________;

       、(2x+3)2=_____________;④(3a-2)2=_______________;

        ⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;

       、(+n)2=___________.

        〈四〉、[學生小結(jié)]

        你認為完全平方公式在應用過程中,需要注意那些問題?

        (1)公式右邊共有3項。

        (2)兩個平方項符號永遠為正。

        (3)中間項的符號由等號左邊的兩項符號是否相同決定。

        (4)中間項是等號左邊兩項乘積的2倍。

        〈五〉、冒險島:

        (1)(-3a+2b)2=________________________________

        (2)(-7-2m)2=__________________________________

        (3)(-+2n)2=_______________________________

        (4)(3/5a-1/2b)2=________________________________

        (5)(mn+3)2=__________________________________

        (6)(2xy2-3x2y)2=_______________________________

        (7)(2n3-3m3)2=________________________________

        〈六〉、學生自我評價

        [小結(jié)]通過本節(jié)課的學習,你有什么收獲和感悟?

        本節(jié)課,我們自己通過計算、分析結(jié)果,總結(jié)出了完全平方公式。在知識探索的過程中,同學們積極思考,大膽探索,團結(jié)協(xié)作共同取得了進步。

        〈七〉[作業(yè)]P34隨堂練習P36習題

        七、課后反思

        本節(jié)課雖然算不上課本中的難點,但在整式一章中是個重點。它是多項式乘法特殊形式下的一種簡便運算。學生需要熟練掌握公式兩種形式的使用方法,以提高運算速度。授課過程中,應注重讓學生總結(jié)公式的等號兩邊的特點,讓學生用語言表達公式的內(nèi)容,讓學生說明運用公式過程中容易出現(xiàn)的問題和特別注意的細節(jié)。然后再通過逐層深入的練習,鞏固完全平方公式兩種形式的應用。為完全平方公式第二節(jié)課的實際應用和提高應用做好充分的準備。

      初中數(shù)學教學設計14

        一、教學目標:

        1.經(jīng)歷探索二次函數(shù)與一元二次方程的關系的過程,體會方程與函數(shù)之間的聯(lián)系.

        2.理解拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.

        3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

        二、教學重點

        利用二次函數(shù)的圖象求一元二次方程的近似根。

        教學難點:

        理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關系。

        三、教學方法:

        啟發(fā)引導合作交流

        四:教具、學具:

        課件

        五、教學媒體:

        計算機、實物投影。

        六、教學過程:

        [活動1]檢查預習引出課題

        預習作業(yè):

        1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

        2.回顧一次函數(shù)與一元一次方程的關系,利用函數(shù)的圖象求方程3x-4=0的解.

        師生行為:教師展示預習作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當總結(jié)和評價。

        教師重點關注:學生回答問題結(jié)論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。

        設計意圖:這兩道預習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學生回顧二次方程的相關知識;2題是一次函數(shù)與一元一次方程的關系的問題,這題的設計是讓學生用學過的熟悉的知識類比探究本課新知識。

        [活動2]創(chuàng)設情境探究新知

        問題

        1.課本p16問題.

        2.結(jié)合圖形指出,為什么有兩個時間球的高度是15m或0m?為什么只在一個時間球的高度是20m?

       。ńY(jié)合預習題1,完成課本p16觀察中的題目。)

        師生行為:教師提出問題1,給學生獨立思考的時間,教師可適當引導,對學生的解題思路和格式進行梳理和規(guī)范;問題2學生獨立思考指名回答,注重數(shù)形結(jié)合思想的滲透;問題3是由學生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導學生總結(jié)歸納出正確結(jié)論。

        二次函數(shù)y=ax2+bx+c的圖象和x軸交點的坐標與一元二次方程ax2+bx+c=0的根有什么關系?

        二次函數(shù)y=ax2+bx+c的

        圖象和x軸交點

        兩個交點

        一個交點

        沒有交點

        教師重點關注:

        1.學生能否把實際問題準確地轉(zhuǎn)化為數(shù)學問題;

        2.學生在思考問題時能否注重數(shù)形結(jié)合思想的應用;

        3.學生在探究問題的過程中,能否經(jīng)歷獨立思考、認真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準確。

        設計意圖:由現(xiàn)實中的實際問題入手給學生創(chuàng)設熟悉的問題情境,促使學生能積極地參與到數(shù)學活動中去,體會二次函數(shù)與實際問題的關系;學生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關系,培養(yǎng)學生的合作精神,積累學習經(jīng)驗。

        [活動3]例題學習鞏固提高

        問題:例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1).

        師生行為:教師提出問題,引導學生根據(jù)預習題2獨立完成,師生互相訂正。

        教師關注:(1)學生在解題過程中格式是否規(guī)范;(2)學生所畫圖象是否準確,估算方法是否得當。

        設計意圖:通過預習題2的鋪墊,同學們已經(jīng)從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。

        [活動4]練習反饋鞏固新知一元二次方程一元二次方程ax2+bx+c=0ax2+bx+c=0的根兩個相異的實數(shù)根兩個相等的實數(shù)根沒有實數(shù)根根的判別式δ=b2-4acb2-4ac > 0b2-4ac = 0b2-4ac < 0

        問題:(1)p97.習題1、2(1)。

        師生行為:教師提出問題,學生獨立思考后寫出答案,師生共同評價;問題(2)學生獨立思考后同桌交流,實物投影出學生解題過程,教師強調(diào)正確解題思路。

        教師關注:學生能否準確應用本節(jié)課的知識解決問題;學生解題時候暴露的共性問題作針對性的點評,積累解題經(jīng)驗。

        設計意圖:這兩個題目就是對本節(jié)課知識的鞏固應用,讓新知識內(nèi)化升華,培養(yǎng)數(shù)學思維的嚴謹性。

        [活動5]自主小結(jié),深化提高:

        1.通過這節(jié)課的.學習,你獲得了哪些數(shù)學知識和方法?

        2.這節(jié)課你參與了哪些數(shù)學活動?談談你獲得知識的方法和經(jīng)驗。

        師生活動:學生思考后回答,教師對學生的錯誤予以糾正,不足的予以補充,精彩的適當表揚。

        設計意圖:

        1.題促使學生反思在知識和技能方面的收獲;

        2.題讓學生反思自己的學習活動、認知過程,總結(jié)解決問題的策略,積累學習知識的方法,力求不同的學生有不同的發(fā)展。

        [活動6]分層作業(yè),發(fā)展個性:

        1.(必做題)閱讀教材并完成p97習題21。2:3、4.

        2.(備選題)p97習題21。2:5、6

        設計意圖:分層作業(yè),使不同層次的學生都能有所收獲。

        七、教學反思:

        1.注重知識的發(fā)生過程與思想方法的應用

        《用函數(shù)的觀點看一元二次方程》內(nèi)容比較多,而課時安排只一節(jié),為了在一節(jié)課的時間里更有效地突出重點,突破難點,按照學生的認知規(guī)律遵循教師為主導、學生為主體的指導思想,本節(jié)課給學生布置的預習作業(yè),從學生已有的經(jīng)驗出發(fā)引發(fā)學生觀察、分析、類比、聯(lián)想、歸納、總結(jié)獲得新的知識,讓學生充分感受知識的產(chǎn)生和發(fā)展過程,使學生始終處于積極的思維狀態(tài)中,對新的知識的獲得覺得不意外,讓學生“跳一跳就可以摘到桃子”。

        探究拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關系及其應用的過程中,引導學生觀察圖形,從圖象與x軸交點的個數(shù)與方程的根之間進行分析、猜想、歸納、總結(jié),這是重要的數(shù)學中數(shù)形結(jié)合的思想方法,在整個教學過程中始終貫穿的是類比思想方

        法。這些方法的使用對學生良好思維品質(zhì)的形成有重要的作用,對學生的終身發(fā)展也有一定的作用。

        2.關注學生學習的過程

        在教學過程中,教師作為引導者,為學生創(chuàng)設問題情境、提供問題串、給學生提供廣闊的思考空間、活動空間、為學生搭建自主學習的平臺;學生則在老師的指導下經(jīng)歷操作、實踐、思考、交流、合作的過程,其知識的形成和能力的培養(yǎng)相伴而行,創(chuàng)造“海闊憑魚躍,天高任鳥飛”的課堂境界。

        3.強化行為反思

        “反思是數(shù)學的重要活動,是數(shù)學活動的核心和動力”,本節(jié)課在教學過程中始終融入反思的環(huán)節(jié),用問題的設計,課堂小結(jié),課后的數(shù)學日記等方式引發(fā)學生反思,使學生在掌握知識的同時,領悟解決問題的策略,積累學習方法。說到數(shù)學日記,“數(shù)學日記”就是學生以日記的形式,記述學生在數(shù)學學習和應用過程中的感受與體會。通過日記的方式,學生可以對他所學的數(shù)學內(nèi)容進行總結(jié),寫出自己的收獲與困惑!皵(shù)學日記”該如何寫,寫什么呢?開始摸索寫數(shù)學日記的時候,我根據(jù)課程標準的內(nèi)容給學生提出寫數(shù)學日記的簡單模式:日記參考格式:課題;所涉及的重要數(shù)學概念或規(guī)律;理解得最好的地方;不明白的或還需要進一步理解的地方;所涉及的數(shù)學思想方法;所學內(nèi)容能否應用在日常生活中,舉例說明。通過這兩年的摸索,我把數(shù)學日記大致分為:課堂日記、復習日記、錯題日記。

        4.優(yōu)化作業(yè)設計

        作業(yè)的設計分必做題和選做題,必做題鞏固本課基礎知識,基本要求;選做題屬于拓廣探索題目,培養(yǎng)學生的創(chuàng)新能力和實踐能力。

      初中數(shù)學教學設計15

        新課程標準指出:“問題是思想方法、知識積累和發(fā)展的邏輯力量,是生長新知識、新方法的種子!庇袉栴}才有探究,有探究才有發(fā)展、有創(chuàng)新。學生思維的過程受情境的影響。良好的思維情境會激發(fā)思維動機,喚起求知欲望;不好的思維情境會抑制學生的思維熱情。因此,創(chuàng)設良好的思維情境在數(shù)學教學中就顯得十分重要。教師通過自己的教學活動,有意識地培養(yǎng)學生善于在好的問題情景下主動建構(gòu)新知識,積極參與交流和討論,不斷提高學習能力,發(fā)展創(chuàng)新意識。

        一、聯(lián)系學生的生活實際,創(chuàng)設問題情境

        生活離不開數(shù)學,數(shù)學也離不開生活。實踐證明:聯(lián)系學生已有的生活經(jīng)驗和學生熟悉的事物入手展開教學,有利于學生更好的掌握數(shù)學知識。

        例如在教學菱形性質(zhì)時,導入時是這樣設計的:

        1、我們大家在日常生活中見過哪些菱形圖案?(看誰說的多)學生爭先恐后地說:

        (1)吃過的菱形形狀的食物

       。2)春節(jié)時門上貼的剪紙花

        (3)居室裝飾地板磚

       。4)中國結(jié)

        (5)菱形衣帽架等。

        2、為什么把這些圖案設計成菱形呢?

        3、菱形到底有哪些特殊的性質(zhì)和運用呢?(板書課題) 通過本節(jié)課的學習之后大家可以總結(jié)出來。

        然后通過畫圖和電腦顯示,讓學生去猜想,去探究,去發(fā)現(xiàn),去論證。從而弄清了菱形的定義、性質(zhì)、面積公式及簡單運用,

        然后讓學生思考日常生活中還有哪些菱形性質(zhì)方面的應用。

        這樣通過創(chuàng)設問題情境,讓學生產(chǎn)生一種好奇,一種對知識的渴望,為探究活動創(chuàng)造了良好的條件,為本節(jié)課的成功創(chuàng)造了條件。同時讓學生感受到了數(shù)學問題來源于生活。讓學生多留意身邊的事物轉(zhuǎn)化成數(shù)學問題。但教學中要注意從實際出發(fā),創(chuàng)設學生所熟悉的喜聞樂見的東西。同時不是為情趣而情趣,要注意增加情趣的內(nèi)涵。注意經(jīng)常引導學生用數(shù)學的眼光看待周圍的事物,培養(yǎng)學生數(shù)學問題意識。

        二、變更表述形式,創(chuàng)設問題情境

        在數(shù)學教學中教師可以運用直觀形象的具體材料,創(chuàng)設問題情境,設障布疑,激發(fā)學生思維的積極性和求知需要的一種教學方法——有時可通過變更問題的表述形式,引發(fā)學生興趣。 例如:“等腰三角形的判定定理”的教學,為引出等腰三角形的判定定理,通常提出問題:“如圖(1),△ABC要判定它是等腰三角形

        BC A 有哪些方法呢?”這樣出示問題顯得單調(diào)又乏味。為了同樣的教圖(1)學目的(引導學生獲得判定定理),教師若能根據(jù)“性質(zhì)定理”與“判定定理”的內(nèi)在聯(lián)系,在引導學生性質(zhì)定理后,提出這樣一個實際問題“如圖(2),△ABC是等腰三角形,AB=AC,因不小心,它的一部分被墨水涂沒了,只留下一條底邊BC和一個底角∠C,試問能否把原來的△ABC重新畫出來?”不僅引發(fā)了生動活潑的討論形式,而且也收到良好的引發(fā)效果,(有的先度量∠C度數(shù),再以BC為邊作∠B=∠C;有的取BC中點D,過D作BC的垂線等)。由此可見,在定理或概念性較強的性質(zhì)的教學中,應盡力創(chuàng)設問題情境,使學生認識到所學內(nèi)容的意義,使他們產(chǎn)生學習需要,形成學習的內(nèi)驅(qū)力,誘發(fā)學生積極思維,在教師的指導下,讓學生主動去探索解決問題的辦法,在實踐中培養(yǎng)學生的創(chuàng)造能力。

        三、猜想驗證法,創(chuàng)設問題情境

        在數(shù)學教學中,利用猜想驗證的課堂教學模式創(chuàng)設問題情境,可以積極的促進學生有效的參與課堂教學,學生興趣高漲,主動的進行猜想驗證。

        例如,在教學“三角形的內(nèi)角和”時,我先請同學們試先量一量自己準備好的'三角形的每一個內(nèi)角的度數(shù),然后告訴我其中兩個內(nèi)角的度數(shù),我迅速的說出第三個內(nèi)角的度數(shù)。同學們都感到很驚訝!為什么老師能很快的說出第三個內(nèi)角的度數(shù)呢?通過觀察他們發(fā)現(xiàn):每個三角形的內(nèi)角和都是180度。我問他們是不是任何一個三角形的內(nèi)角和都是180度呢?他們的回答是肯定的。我說這只不過是你們的一個猜想,下面就請同學們利用你手中的學具來驗證你的猜想。于是,同學們立刻想到了手中的三角板,積極的行動起來證明自己的猜想。

        總之,創(chuàng)設問題情境,培養(yǎng)學生問題意識,一方面能激發(fā)學生學習動機、培養(yǎng)創(chuàng)新思維,是新課程理念下數(shù)學教學的重要環(huán)節(jié)。另一方面有助于學生積極地建構(gòu)數(shù)學知識,在情境中自主的參與探究和相互交流,從而達到意義建構(gòu)的目的,提高課堂教學的有效性。當然教學沒有最好,只有更好,讓我們在今后的教學過程中不斷探索,不斷創(chuàng)新,爭取更打的進步。

      【初中數(shù)學教學設計】相關文章:

      初中數(shù)學教學設計07-04

      初中數(shù)學教學設計07-28

      初中數(shù)學教學設計模板09-20

      初中數(shù)學教學設計優(yōu)秀10-23

      初中數(shù)學優(yōu)秀教學設計04-09

      人教版初中數(shù)學教學設計08-07

      初中數(shù)學教學設計模板06-23

      初中數(shù)學教學設計 15篇05-17

      初中數(shù)學教學設計精選15篇05-11

      初中數(shù)學教學設計15篇11-08