久久综合丝袜日本网手机版,日韩欧美中文字幕在线三区,亚洲精品国产品国语在线,极品在线观看视频婷婷

      <small id="aebxz"><menu id="aebxz"></menu></small>
    1. 抽屜原理教學(xué)設(shè)計(jì)

      時(shí)間:2024-03-28 18:18:59 設(shè)計(jì) 我要投稿

      抽屜原理教學(xué)設(shè)計(jì)

        作為一位優(yōu)秀的人民教師,就有可能用到教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)要遵循教學(xué)過(guò)程的基本規(guī)律,選擇教學(xué)目標(biāo),以解決教什么的問(wèn)題。如何把教學(xué)設(shè)計(jì)做到重點(diǎn)突出呢?以下是小編整理的抽屜原理教學(xué)設(shè)計(jì),供大家參考借鑒,希望可以幫助到有需要的朋友。

      抽屜原理教學(xué)設(shè)計(jì)

      抽屜原理教學(xué)設(shè)計(jì)1

        桌上有十個(gè)蘋果,要把這十個(gè)蘋果放到九個(gè)抽屜里,無(wú)論怎樣放,我們會(huì)發(fā)現(xiàn)至少會(huì)有一個(gè)抽屜里面至少放兩個(gè)蘋果。這一現(xiàn)象就是我們所說(shuō)的“抽屜原理”。

        教學(xué)理念:

        激趣是新課導(dǎo)入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學(xué)生置身游戲中開始學(xué)習(xí),為理解抽屜原理埋下伏筆。通過(guò)小組合作,動(dòng)手操作的探究性學(xué)習(xí)把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W(xué)生感興趣又易于理解的內(nèi)容。特別是對(duì)教材中的結(jié)論“總有、至少”等字詞作了充分的闡釋,幫助學(xué)生進(jìn)行較好的“建!,使復(fù)雜問(wèn)題簡(jiǎn)單化,簡(jiǎn)單問(wèn)題模型化,充分體現(xiàn)了新課標(biāo)要求。

        教學(xué)目標(biāo)

        1.經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。

        2.通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

        3.通過(guò)“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

        教學(xué)重難點(diǎn)

        重點(diǎn):經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”。

        難點(diǎn):理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

        教學(xué)過(guò)程:

        一、課前游戲引入。

        師:同學(xué)們?cè)谖覀兩险n之前,先做個(gè)小游戲:老師這里準(zhǔn)備了4把椅子,請(qǐng)5個(gè)同學(xué)上來(lái),誰(shuí)愿來(lái)?(學(xué)生上來(lái)后)

        師:聽清要求 ,老師說(shuō)開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下,好嗎?(好)。這時(shí)教師面向全體,背對(duì)那5個(gè)人。

        師:開始。

        師:都坐下了嗎?

        生:坐下了。

        師:我沒有看到他們坐的情況,但是我敢肯定地說(shuō):“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”我說(shuō)得對(duì)嗎?

        生:對(duì)!

        師:老師為什么能做出準(zhǔn)確的判斷呢?道理是什么?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來(lái)研究這個(gè)原理。(抽屜原理)

        二、通過(guò)操作,探究新知

        1、研究3枝鉛筆放進(jìn)2個(gè)文具盒。

       。1)要把3枝鉛筆放進(jìn)2個(gè)文具盒,有幾種放法?請(qǐng)同學(xué)們想一想,擺一擺,寫一寫,再把你的想法在小組內(nèi)交流。

        (2)反饋:兩種放法:(3,0)和(2,1)。

       。3)從兩種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)文具盒至少放進(jìn)2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說(shuō)得真有道理)

       。4)“總有”什么意思?(一定有)

       。5)“至少”有2枝什么意思?(不少于2枝)

        小結(jié):在研究3枝鉛筆放進(jìn)2個(gè)文具盒時(shí),同學(xué)們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個(gè)文具盒放進(jìn)2枝鉛筆)

        2、研究4枝鉛筆放進(jìn)3個(gè)文具盒。

       。1)要把4枝鉛筆放進(jìn)3個(gè)文具盒里,有幾種放法?請(qǐng)同學(xué)們動(dòng)手?jǐn)[一擺,再把你的想法在小組內(nèi)交流。

       。2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

        (3)從四種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)筆盒至少有2枝鉛筆)

       。4)你是怎么發(fā)現(xiàn)的?

       。5)大家通過(guò)枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個(gè)文具盒放進(jìn)2枝鉛筆”。如果要讓每個(gè)文具盒里放的筆盡可能的少,你覺得應(yīng)該要怎樣放?(每個(gè)文具盒都先放進(jìn)一枝,還剩一枝不管放進(jìn)哪個(gè)文具盒,總會(huì)有一個(gè)文具盒至少有2枝筆)(你真是一個(gè)善于思想的孩子。)

       。6)這位同學(xué)運(yùn)用了假設(shè)法來(lái)說(shuō)明問(wèn)題,你是假設(shè)先在每個(gè)文具盒里放1枝鉛筆,這種放法其實(shí)也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個(gè)文具盒,那么這個(gè)文具盒就有2枝鉛筆了)

        (7)誰(shuí)能用算式來(lái)表示這位同學(xué)的想法?(5÷4=1…1)商1表示什么?余數(shù)1表示什么?怎么辦?

       。8)在探究4枝鉛筆放進(jìn)3個(gè)文具盒的問(wèn)題,同學(xué)們的方法有兩種,一是枚舉了所有放法,找規(guī)律,二是采用了“假設(shè)法”來(lái)說(shuō)明理由,你覺得哪種方法更明了更簡(jiǎn)單?

        3、類推:把5枝鉛筆放進(jìn)4個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

        把6枝鉛筆放進(jìn)5個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

        把7枝鉛筆放進(jìn)6個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

        把100枝鉛筆放進(jìn)99個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

        4、從剛才我們的探究活動(dòng)中,你有什么發(fā)現(xiàn)?(只要放的鉛筆比文具盒的數(shù)量多1,總有一個(gè)文具盒里至少放進(jìn)2枝鉛筆。)

        5、如果鉛筆數(shù)比文具盒數(shù)多2呢?多3呢?是不是也能得到結(jié)論:“總有一個(gè)筆盒至少有2枝鉛筆!

        6、小結(jié):剛才我們分析了把鉛筆放進(jìn)文具盒的'情況,只要鉛筆數(shù)量多于文具盒數(shù)量時(shí),總有一個(gè)文具盒至少放進(jìn)2枝鉛筆。

        這就是今天我們要學(xué)習(xí)的抽屜原理。既然叫“抽屜原理”是不是應(yīng)該和抽屜有聯(lián)系吧?鉛筆相當(dāng)于我們要準(zhǔn)備放進(jìn)抽屜的物體,那么文具盒就相當(dāng)于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結(jié)論“總有一個(gè)抽屜里放進(jìn)了2個(gè)物體。”

        7、在我們的生活中,常常會(huì)遇到抽屜原理,你能不能舉個(gè)例子?在課前我們玩的游戲中,有沒有抽屜原理?

        過(guò)渡:同學(xué)們非常了不起,善于運(yùn)用觀察、分析、思考、推理、證明的方法研究問(wèn)題,得出結(jié)論。同學(xué)們的思維也在不知不覺中提升了許多,那么讓我們?cè)賮?lái)研究這樣一組問(wèn)題。

        1、研究把5本書放進(jìn)2個(gè)抽屜。

       。1)把5本書放進(jìn)2個(gè)抽屜會(huì)有幾種情況?(5,0)、(4,1)和(3,2)

       。2)從三種情況中,我們可以得到怎樣的結(jié)論呢?(總有一個(gè)抽屜至少放進(jìn)了3本書)

        (3)還可以怎樣理解這個(gè)結(jié)論?先在每個(gè)抽屜里放進(jìn)2本,剩下的1本放進(jìn)任何一個(gè)抽屜,這個(gè)抽屜就有3本書了。

       。4)可以把我們的想法用算式表示出來(lái):5÷2=2…1(商2表示什么,余數(shù)1表示什么)2+1=3表示什么?

        2、類推:如果把7本書放進(jìn)2個(gè)抽屜中,至少有一個(gè)抽屜放進(jìn)4本書。

        如果把9本書放進(jìn)2個(gè)抽屜中。至少有一個(gè)抽屜放進(jìn)5本書。

        如果把11本書放進(jìn)3個(gè)抽屜中。至少有一個(gè)抽屜放進(jìn)4本書。你是怎樣想的?(11÷3=3…2)商3表示什么?余數(shù)2表示什么?3+1=4表示什么?

        3、小結(jié):從以上的學(xué)習(xí)中,你有什么發(fā)現(xiàn)?(在解決抽屜原理時(shí),我們可以運(yùn)用假設(shè)法,把物體盡可量多地“平均分”給各個(gè)抽屜,總有一個(gè)抽屜比平均分得的物體數(shù)多1。)

        4、經(jīng)過(guò)剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡(jiǎn)單的思維過(guò)程,個(gè)個(gè)都是了不起的數(shù)學(xué)家。 “抽屜原理”最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用!俺閷显怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。

        5、做一做:

        7只鴿子飛回5個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一個(gè)佶舍里。為什么?

        8只鴿子飛回3個(gè)鴿舍,至少有3只鴿子要飛時(shí)同一個(gè)鴿舍里。為什么?

        (先讓學(xué)生獨(dú)立思考,在小組里討論,再全班反饋)

        三、遷移與拓展

        下面我們一起來(lái)放松一下,做個(gè)小游戲。

        我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請(qǐng)五位同學(xué)每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請(qǐng)大家猜測(cè)一下,同種花色的至少有幾張?為什么?

        四、總結(jié)全課

        這節(jié)課,你有什么收獲?

      抽屜原理教學(xué)設(shè)計(jì)2

        教學(xué)目標(biāo):

        1.知識(shí)與能力:初步了解抽屜原理,運(yùn)用抽屜原理知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題。

        2.過(guò)程和方法:經(jīng)歷抽屜原理的探究過(guò)程,通過(guò)動(dòng)手操作、分析、推理等活動(dòng),發(fā)現(xiàn)、歸納、總結(jié)原理。

        3.情感與價(jià)值:通過(guò)“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力;提高同學(xué)們解決問(wèn)題的能力和興趣。

        教學(xué)重點(diǎn):

        經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”。

        教學(xué)難點(diǎn):

        理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

        教學(xué)過(guò)程:

        一、創(chuàng)設(shè)情景

        導(dǎo)入新課

        師:同學(xué)們喜歡玩游戲嗎?講臺(tái)前面有6張凳子,請(qǐng)7位同學(xué)來(lái)?yè)尩首幼。我不看同學(xué)們?cè)鯓幼,我敢肯定的說(shuō):這6張凳子中總有一張凳子至少有兩個(gè)同學(xué)同坐,大家相信嗎?(師生演示)

        師:想知道老師為什么能做出如此準(zhǔn)確的'判斷嗎?這其中蘊(yùn)含一個(gè)有趣的數(shù)學(xué)原理——抽屜原理。(板書課題)這節(jié)課我們就一起來(lái)研究這個(gè)數(shù)學(xué)原理。

        師:通過(guò)今天的學(xué)習(xí),你想知道些什么?

        二、自主操作

        探究新知

        (一)活動(dòng)一課件出示:把4枝鉛筆放到3個(gè)筆筒里,可以怎么放?師:你們擺擺看,會(huì)有什么發(fā)現(xiàn)?把你們發(fā)現(xiàn)的結(jié)果用自己喜歡的方式記錄下來(lái)。

        1、學(xué)生動(dòng)手操作,師巡視,了解情況。

        2、匯報(bào)交流說(shuō)理活動(dòng)

       、賻煟河惺裁窗l(fā)現(xiàn)?誰(shuí)能說(shuō)說(shuō)看?

        師根據(jù)學(xué)生的回答用數(shù)字在黑板上記錄。板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1)師:你們是這樣記錄的嗎?

        師:還可以用圖記錄。我把用圖記錄的用課件展示出來(lái)。師:還可以用表格記錄。師板書在黑板上。 ②再認(rèn)真觀察記錄,還有什么發(fā)現(xiàn)?

        板書:不管怎樣放,總有一個(gè)筆筒里至少有2枝鉛筆。

       、墼鯓訑[可以一次得出結(jié)論?(啟發(fā)學(xué)生用平均分的擺法,引出用除法計(jì)算。)板書:4÷3=1(枝)1(枝)

       、軒煟哼@種方法是不是很快就能確定總有一個(gè)筆筒里至少有幾枝鉛筆呢?(學(xué)生交流)

       、莅5枝鉛筆放進(jìn)4個(gè)筆筒里呢?還用擺嗎?板書:5÷4=1(枝)1(枝)

        ⑥課件出示:把6枝鉛筆放進(jìn)5個(gè)筆筒呢?把7枝鉛筆放進(jìn)6個(gè)筆筒呢?把10枝鉛筆放進(jìn)9個(gè)筆筒呢?把100枝鉛筆放進(jìn)99個(gè)筆筒呢?板書:7÷6=1(枝)1(枝)10÷9=1(枝)1(枝)100÷99=1(枝)1(枝)

       、哂^察這些算式你發(fā)現(xiàn)了什么規(guī)律?預(yù)設(shè)學(xué)生說(shuō)出:至少數(shù)=商+余數(shù)

        師:是不是這個(gè)規(guī)律呢?我們來(lái)試一試吧!

        3、深化探究得出結(jié)論

        課件出示:5只鴿子飛回3個(gè)鴿籠,至少有兩只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?

       、賹W(xué)生活動(dòng)

        ②交流說(shuō)理活動(dòng)

        預(yù)設(shè):生1:題目的說(shuō)法是錯(cuò)誤的,用商加余數(shù),應(yīng)該至少有3只鴿子要飛進(jìn)同一個(gè)鴿籠。

        生2:不同意!不是“商加余數(shù)”是“商加1”.

       、蹘煟旱降资恰吧碳佑鄶(shù)”還是“商加1”?誰(shuí)的結(jié)論對(duì)呢?在小組里進(jìn)行研究、討論。

       、軒煟赫l(shuí)能說(shuō)清楚?板書:5÷3=1(只)2(只)至少數(shù)=商+1

       。ǘ┗顒(dòng)二

        課件出示:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

        1、分組操作后匯報(bào)

        板書:5÷2=2(本)1(本)7÷2=2(本)1(本)9÷2=2(本)1(本)

        2、那么探究到現(xiàn)在,大家認(rèn)為怎樣才能確定總有一個(gè)抽屜至少有幾本書?生:至少數(shù)=商+1

        3、師:我同意大家的討論。我們這個(gè)發(fā)現(xiàn)就是有趣的“抽屜原理

        ”,(點(diǎn)題)!俺閷显怼庇址Q“鴿籠原理”,最先是由19世紀(jì)德國(guó)數(shù)學(xué)家狄里克雷提出的,所以又稱“狄里克雷原理”。這一原理在實(shí)際問(wèn)題中有著廣泛的應(yīng)用。用它可以解決許多有趣的問(wèn)題,讓我們來(lái)試試好嗎?

        三、靈活應(yīng)用

        解決問(wèn)題

        1、解釋課前提出的游戲問(wèn)題。

        2、課件出示:8只鴿子飛回3個(gè)鴿舍,不管怎樣分,總有一個(gè)鴿舍至少有幾只鴿子?

        3、課件出示:任意13人中,至少有兩人的出生月份相同。為什么?

        4、課件出示:任意367名學(xué)生中,一定存在兩名學(xué)生,他們?cè)谕惶爝^(guò)生日。為什么?

        四、暢談感受

        教學(xué)結(jié)束

        同學(xué)們,今天這節(jié)課有什么感受?(抽生談?wù),師總結(jié)。)在這堂課中,我首先設(shè)計(jì)(搶凳子游戲,講臺(tái)前面有6張凳子,請(qǐng)7位同學(xué)來(lái)?yè)尩首幼。我不看同學(xué)們?cè)鯓幼腋铱隙ǖ恼f(shuō):這6張凳子中同學(xué)們不管怎樣坐,總有一張凳子至少有兩個(gè)同學(xué)同坐,大家相信嗎?)目的一:小孩子最喜歡玩游戲,一說(shuō)玩游戲,調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性;目的二:激發(fā)學(xué)生思考什么是抽屜原理,對(duì)解決這類問(wèn)題有什么作用?

        接著出示:把4枝鉛筆放到3個(gè)筆筒里,可以怎么放?我讓學(xué)生用自已喜歡的方法動(dòng)手操作、匯報(bào)、板書,得出結(jié)論,又提出:怎樣擺可以一次得出結(jié)論?小組討論,然后針對(duì)他們的方法進(jìn)行講解(邊操作邊講解),其實(shí)這方法是用平均分的擺法,引出用除法計(jì)算。)板書:4÷3=1(枝)1(枝)得出預(yù)設(shè)學(xué)生說(shuō)出:至少數(shù)=商+余數(shù),讓學(xué)生有更深的認(rèn)識(shí),同時(shí)也讓他們了解平均分的擺法最好,為后面的學(xué)習(xí)打下鋪墊。

        然后,出示活動(dòng)二:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?先動(dòng)手操作,同時(shí)用算式計(jì)算,看算式的規(guī)律是:發(fā)現(xiàn)是至少數(shù)=商+1接著我反問(wèn)任意367名學(xué)生中,一定存在兩名學(xué)生,他們?cè)谕惶爝^(guò)生日。為什么?這樣有利于學(xué)生的反向思維能力的鍛煉。

      抽屜原理教學(xué)設(shè)計(jì)3

        導(dǎo)學(xué)內(nèi)容:P70——71例1、例2,完成做一做及練習(xí)十二1、2題

        導(dǎo)學(xué)目標(biāo)

        1、經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。

        2、通過(guò)“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

        導(dǎo)學(xué)重點(diǎn):經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”。

        導(dǎo)學(xué)難點(diǎn):理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

        預(yù)習(xí)學(xué)案

        同學(xué)們玩過(guò)撲克牌嗎?撲克牌有幾種花色?取出兩張王牌,在剩下的52張撲克牌中任意取出5張,我不看牌,我敢肯定的說(shuō):這5張牌至少有兩張是同花色,大家相信嗎?

        導(dǎo)學(xué)案

        通過(guò)今天的學(xué)習(xí),你想知道些什么?

        自主操作探究新知

        (一)活動(dòng)1

        課件出示:

        把3本書進(jìn)2個(gè)抽屜中,有幾種方法?請(qǐng)同學(xué)們放一放,再把你的想法在小組內(nèi)交流。

        1、學(xué)生動(dòng)手操作,師巡視,了解情況。

        2、匯報(bào)交流說(shuō)理活動(dòng)

        你們有什么發(fā)現(xiàn)?誰(shuí)能說(shuō)說(shuō)看?

        根據(jù)學(xué)生的回答用數(shù)字在黑板上記錄。板書:(3,0)(2,1)(1,2,)(0,3)

        還可以用什么方法記錄?我把用圖記錄的'用課件展示出來(lái)。

       、僭僬J(rèn)真觀察記錄,還有什么發(fā)現(xiàn)?

        (總有一個(gè)抽屜里至少有2本書。)

       、谠鯓臃趴梢砸淮蔚贸鼋Y(jié)論?(啟發(fā)學(xué)生用平均分的放法,引出用除法計(jì)算。)板書:3÷2=1(本)……1(本)

       、圻@種方法是不是很快就能確定總有一個(gè)抽屜里至少有幾本書呢?(學(xué)生交流)

        ④把4本書放進(jìn)3個(gè)抽屜里呢?還用擺嗎?板書:4÷3=1(本)……1(本)

       、菡n件出示:把6本書放進(jìn)5個(gè)抽屜呢?

        把7本書放進(jìn)6個(gè)抽屜呢?

        把10本書放進(jìn)9個(gè)抽屜呢?

        把100本書放進(jìn)99個(gè)抽屜呢?

        板書:7÷6=1(本)……1(本)

        10÷9=1(本)……1(本)

        100÷99=1(本)……1(本)

       、抻^察這些算式你發(fā)現(xiàn)了什么規(guī)律?

        預(yù)設(shè)學(xué)生說(shuō)出:至少數(shù)=商+余數(shù)

        師:是不是這個(gè)規(guī)律呢?我們來(lái)試一試吧!

        3、深化探究得出結(jié)論

        課件出示:7只鴿子飛回5個(gè)鴿籠,至少有兩只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?

       、賹W(xué)生活動(dòng)

       、诮涣髡f(shuō)理活動(dòng)

       、鄣降资恰吧碳佑鄶(shù)”還是“商加1”?誰(shuí)的結(jié)論對(duì)呢?在小組里進(jìn)行研究、討論。

        ④誰(shuí)能說(shuō)清楚?板書:5÷3=1(只)……2(只)至少數(shù)=商+1

        (二)活動(dòng)二

        課件出示:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

        分組操作后匯報(bào)

        板書:5÷2=2(本)……1(本)

        7÷2=3(本)……1(本)

        9÷2=4(本)……1(本)

        那么探究到現(xiàn)在,大家認(rèn)為怎樣才能確定總有一個(gè)抽屜至少有幾本書?

        (至少數(shù)=商+1)

        我同意大家的討論。我們這個(gè)發(fā)現(xiàn)就是有趣的“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)德國(guó)數(shù)學(xué)家狄里克雷提出的,所以又稱“狄里克雷原理”。這一原理在實(shí)際問(wèn)題中有著廣泛的應(yīng)用。用它可以解決許多有趣的問(wèn)題,讓我們來(lái)試試好嗎?

        靈活應(yīng)用解決問(wèn)題

        1、解釋課前提出的游戲問(wèn)題。

        2、8只鴿子飛回3個(gè)鴿舍,不管怎樣分,總有一個(gè)鴿舍至少有幾只鴿子?

        3、任意13人中,至少有兩人的出生月份相同。為什么?

        4、任意367名學(xué)生中,一定存在兩名學(xué)生,他們?cè)谕惶爝^(guò)生日。為什么?

        暢談感受:同學(xué)們,今天這節(jié)課有什么感受?

        課堂檢測(cè)

        一、填空

        1、7只鴿子飛進(jìn)5個(gè)鴿舍,至少有( )只鴿子要飛進(jìn)同伴的鴿舍里。

        2、有9本書,要放進(jìn)2個(gè)抽屜里,必須有一個(gè)抽屜至少要放( )本書。

        3、四年級(jí)兩個(gè)班共有73名學(xué)生,這兩個(gè)班的學(xué)生至少有( )人是同一月出生的。

        4、任意給出3個(gè)不同的自然數(shù),其中一定有2個(gè)數(shù)的和是( )數(shù)。

        二、選擇

        1、5個(gè)人逛商店共花了301元錢,每人花的錢數(shù)都是整數(shù),其中至少有一人花的錢數(shù)不低于( )元。

        A、60 B、61 C、62 D、59

        2、3種商品的總價(jià)是13元,每種商品的價(jià)格都是整數(shù),至少有一種商品的價(jià)格不低于( )元。

        A、3 B、4 C、5 D、無(wú)法確定

        三、解決問(wèn)題

        1、現(xiàn)有5把鎖的各1把鑰匙混在一起跟鎖對(duì)不上號(hào)了,請(qǐng)問(wèn)最少試幾次就可能全部對(duì)上號(hào)?

        2、六、一班四組有男女同學(xué)各5名,把他們的名字分別用10個(gè)數(shù)字代替,至少要點(diǎn)幾個(gè)數(shù)字,才能保證叫到兩名男生或兩名女生?

        課后拓展

        1、六、二班有學(xué)生35人,李老師至少要準(zhǔn)備多少本練習(xí)本,才能保證有一個(gè)人的練習(xí)本在兩本或兩本以上?

        2、從1、2、3……100,這100個(gè)連續(xù)自然數(shù)中,任意取出51個(gè)不相同的數(shù),其中必有兩個(gè)數(shù)互質(zhì),這是為什么呢?

        板書設(shè)計(jì)

        抽屜原理

        5÷2=2……1至少有3只

        7÷2=3……1至少有4只

        9÷2=4……1至少有5只

        11÷2=5……1至少有6只

        至少數(shù)=商數(shù)+1

      抽屜原理教學(xué)設(shè)計(jì)4

        教學(xué)目標(biāo):

        1.使學(xué)生能理解抽取問(wèn)題中的一些基本原理,并能解決有關(guān)簡(jiǎn)單的問(wèn)題。

        2.體會(huì)數(shù)學(xué)與日常生活的聯(lián)系,了解數(shù)學(xué)的價(jià)值,增強(qiáng)應(yīng)用數(shù)學(xué)的意識(shí)。

        教學(xué)重點(diǎn):抽取問(wèn)題。

        教學(xué)難點(diǎn):理解抽取問(wèn)題的基本原理。

        教學(xué)過(guò)程:

        一、創(chuàng)設(shè)情境,復(fù)習(xí)舊知

        1、出示復(fù)習(xí)題:

        師:老師這兒有一個(gè)問(wèn)題,不知道哪位同學(xué)能幫助解答一下?

        2、課件出示:把3個(gè)蘋果放進(jìn)2個(gè)抽屜里,總有一個(gè)抽屜至少放2個(gè)蘋果,為什么?

        3、學(xué)生自由回答。

        二、教學(xué)例2

        1、出示:盒子里有同樣大小的紅球和藍(lán)球各4個(gè)。要想摸出的球一定有2個(gè)同色的,最少要摸出幾個(gè)球?

       。1)組織學(xué)生讀題,理解題意。

        教師:你們能猜出結(jié)果嗎?

        組織學(xué)生猜一猜,并相互交流。

        指名學(xué)生匯報(bào)。

        學(xué)生匯報(bào)時(shí)可能會(huì)答出:只摸4個(gè)球就可以了,至少要摸出5個(gè)球……

        教師:能驗(yàn)證嗎?

        教師拿出準(zhǔn)備好的紅球及藍(lán)球,組織學(xué)生到講臺(tái)前來(lái)動(dòng)手摸一摸,驗(yàn)證匯報(bào)結(jié)果的正確性。

       。2)教師:剛才我們通過(guò)驗(yàn)證的方法得出了結(jié)論,聯(lián)系前面所學(xué)的知識(shí),這是一個(gè)什么問(wèn)題?

        2、組織學(xué)生議一議,并相互交流。再指名學(xué)生匯報(bào)。

        教師:上面的問(wèn)題是一個(gè)抽屜問(wèn)題,請(qǐng)同學(xué)們找一找:“抽屜”是什么?“抽屜”有幾個(gè)?

        組織學(xué)生議一議,并相互交流。

        指名學(xué)生匯報(bào),使學(xué)生明確:抽屜就是顏色數(shù)。(板書)

        教師:能用例1的知識(shí)來(lái)解答嗎?

        組織學(xué)生議一議,并相互交流。

        指名學(xué)生匯報(bào)。

        使學(xué)生明確:只要分的物體比抽屜多,就能保證總有一個(gè)抽屜至少放蕩2個(gè)球,因此要保證摸出兩個(gè)同色的球,摸出球的數(shù)量至少要比顏色的.種數(shù)多一。

       。3)組織學(xué)生對(duì)例題的解答過(guò)程議一議,相互交流,理解解決問(wèn)題的方法。

        學(xué)生不難發(fā)現(xiàn):只要摸出的球比它們的顏色種數(shù)多1,就能保證有兩個(gè)球同色。

        3、做一做

        第1題。

        1、獨(dú)立思考,判斷正誤。

        2、同學(xué)交流,說(shuō)明理由。其中“370名學(xué)生中一定有兩人的生日是同一天”與例1中的“抽屜原理”是一類,“49名學(xué)生中一定有5人的出生月份相同”則與例2的類型相同。教師要引導(dǎo)學(xué)生把“生日問(wèn)題”轉(zhuǎn)化成“抽屜問(wèn)題”。因?yàn)橐荒曛凶疃嘤?66天,如果把這366天看作366個(gè)抽屜,把370個(gè)學(xué)生放進(jìn)366個(gè)抽屜,人數(shù)大于抽屜數(shù),因此總有一個(gè)抽屜里至少有兩個(gè)人,即他們的生日是同一天。而一年中有12個(gè)月,如果把這12個(gè)月看作12個(gè)抽屜,把49個(gè)學(xué)生放進(jìn)12個(gè)抽屜,49÷12=4……1,因此,總有一個(gè)抽屜里至少有5(即4+1)個(gè)人,也就是他們的生日在同一個(gè)月。

        三鞏固練習(xí)

        完成課文練習(xí)十二第1、3題。

        四、總結(jié)評(píng)價(jià)

        1、師:這節(jié)課你有哪些收獲或感想?

        五、布置作業(yè)

        1.做一做。把紅、黃、藍(lán)三種顏色的小棒各10根混在一起。如果讓你閉上眼睛,每次最少拿出幾根才能保證一定有2根同色的小棒?保證有2對(duì)同色的小棒呢?

        2.試一試。給下面每個(gè)格子涂上紅色或藍(lán)色。觀察每一列,你有什么發(fā)現(xiàn)?如果只涂?jī)闪械脑挘Y(jié)論有什么變化呢?

        3、拓展練習(xí)(選做)

       。1)任意給出5個(gè)非0的自然數(shù)。有人說(shuō)一定能找到3個(gè)數(shù),讓這3個(gè)數(shù)的和是3的倍數(shù)。你信不信?

       。2)把1~8這8個(gè)數(shù)任意圍成一個(gè)圓圈。在這個(gè)圈上,一定有3個(gè)相鄰的數(shù)之和大于13。你知道其中的奧秘嗎?

      抽屜原理教學(xué)設(shè)計(jì)5

        教材分析

        《抽屜原理的認(rèn)識(shí)》是人教版數(shù)學(xué)六年級(jí)下冊(cè)第五章內(nèi)容。在數(shù)學(xué)問(wèn)題中有一類與“存在性”有關(guān)的問(wèn)題。在這類問(wèn)題中,只需要確定某個(gè)物體(或某個(gè)人)的存在就可以了,并不需要指出是哪個(gè)物體(或哪個(gè)人),也不需要說(shuō)明是通過(guò)什么方式把這個(gè)存在的物體(或人)找出來(lái)。這類問(wèn)題依據(jù)的理論,我們稱之為“抽屜原理”。“抽屜原理”最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄里克雷(Dirichlet)運(yùn)用于解決數(shù)學(xué)問(wèn)題的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。、

        學(xué)情分析

        本節(jié)課我根據(jù)“教師是組織者、引導(dǎo)者和合作者”這一理念,以學(xué)生參與活動(dòng)為主線,創(chuàng)建新型的教學(xué)結(jié)構(gòu)。通過(guò)幾個(gè)直觀的例子,用假設(shè)法向?qū)W生介紹“抽屜原理”,學(xué)生難以理解,感覺抽象。在教學(xué)時(shí),我結(jié)合本班實(shí)際,用學(xué)生熟悉的吸管和杯子貫穿整個(gè)課堂,讓學(xué)生通過(guò)動(dòng)手操作,在活動(dòng)中真正去認(rèn)識(shí)、理解“抽屜原理”學(xué)生學(xué)得輕松也容易接受。

        教學(xué)目標(biāo)

        1、經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。

        2、通過(guò)操作發(fā)展的類推能力,形成抽象的數(shù)學(xué)思維。

        3、通過(guò)“抽屜原理”的靈活應(yīng)用,感受數(shù)學(xué)的魅力。

        教學(xué)重點(diǎn)和難點(diǎn)

        重點(diǎn):

        經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”。

        難點(diǎn):

        理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

        教學(xué)內(nèi)容:

        六年級(jí)數(shù)學(xué)下冊(cè)70頁(yè)、71頁(yè)例1、例2。

        教學(xué)目標(biāo):

        1、理解“抽屜原理”的一般形式。

        2、經(jīng)歷“抽屜原理”的探究過(guò)程,體會(huì)比較、推理的學(xué)習(xí)方法,會(huì)用“抽屜原理”解決簡(jiǎn)單的的實(shí)際問(wèn)題。

        3、感受數(shù)學(xué)的魅力,提高學(xué)習(xí)興趣,培養(yǎng)學(xué)生的.探究精神。

        教學(xué)重點(diǎn):

        經(jīng)歷“抽屜原理”探究過(guò)程,初步了解“抽屜原理”。

        教學(xué)難點(diǎn):

        理解“抽屜原理”的一般規(guī)律。

        教學(xué)準(zhǔn)備:

        相應(yīng)數(shù)量的杯子、鉛筆、課件。

        教學(xué)過(guò)程:

        一、情景引入

        讓五位學(xué)生同時(shí)坐在四把椅子上,引出結(jié)論:不管怎么坐,總有一把椅子上至少坐了兩名學(xué)生。

        師:同學(xué)們,你們想知道這是為什么嗎?今天,我們一起研究一個(gè)新的有趣的數(shù)學(xué)問(wèn)題。

        二、探究新知

        1、探究3根鉛筆放到2個(gè)杯子里的問(wèn)題。

        師:現(xiàn)在用3根鉛筆放在2個(gè)杯子里,怎么放?有幾種放法?大家擺擺看,有什么發(fā)現(xiàn)?

        擺完后學(xué)生匯報(bào),教師作相應(yīng)的板書(3,0)(2,1),引導(dǎo)學(xué)生觀察理解說(shuō)出:不管怎么放總有一個(gè)杯子至少有2根鉛筆。

       。1)師:依此推下去,把4根鉛筆放在3個(gè)杯子又怎么放呢?會(huì)有這種結(jié)論嗎?讓學(xué)生動(dòng)手操作,做好記錄,認(rèn)真觀察,看看有什么發(fā)現(xiàn)?

        (2)學(xué)生匯報(bào)放結(jié)果,結(jié)合學(xué)具操作解釋。教師作相應(yīng)記錄。

        (4,0,0) (3,1,0) (2,2,0) (2,1,1)

       。▽W(xué)生通過(guò)操作觀察、比較不難發(fā)現(xiàn)有與上個(gè)問(wèn)題同樣結(jié)論。)

       。3)學(xué)生回答后讓學(xué)生閱讀例1中對(duì)話框:不管怎么放,總有一個(gè)杯子里至少放進(jìn)2根鉛筆。

        師:“總有”是什么意思?“至少”呢?讓學(xué)生理解它們的含義。

        師:怎樣放才能總有一個(gè)杯子里鉛筆數(shù)最少?引導(dǎo)學(xué)生理解需要“平均放”。

        教師出示課件演示讓學(xué)生進(jìn)一步理解“平均放”。

        3、探究n+1根鉛筆放進(jìn)n個(gè)杯子問(wèn)題

        師:那我們?cè)偻孪耄?根鉛筆放在5個(gè)杯子里,你感覺會(huì)有什么結(jié)論?

        讓學(xué)生思考發(fā)現(xiàn)不管怎么放,總有一個(gè)杯子里至少有2根鉛筆。

        師:7根鉛筆放進(jìn)6個(gè)杯子,你們又有什么發(fā)現(xiàn)?

        學(xué)生回答完之后,師提出:是不是只要鉛筆數(shù)比杯子數(shù)多1,總有一個(gè)杯子里至少放進(jìn)2根鉛筆?讓學(xué)生進(jìn)行小組合作討論匯報(bào)。

        學(xué)生匯報(bào)后引導(dǎo)學(xué)生用實(shí)驗(yàn)驗(yàn)證想法。

        師:把10根小棒放在9個(gè)杯子里呢,總有一個(gè)杯子里至少有幾根小棒?(2根)

        師:把100根小棒放在99個(gè)杯子里,會(huì)有什么結(jié)論呢?(2根)

        4、總結(jié)規(guī)律

        師:剛才我們研究的都是鉛筆數(shù)比杯子數(shù)多1,而余數(shù)也正巧是1的,如果余下鉛筆數(shù)比杯子多2、多3、多4的呢,結(jié)論又會(huì)怎樣?

       。1)探究把5根鉛筆放在3個(gè)杯子里,不管怎么放,總有一個(gè)杯子里至少有幾根鉛筆?為什么?

        a、先同桌擺一擺,再說(shuō)一說(shuō)。

        b、你怎么分的?

        學(xué)生匯報(bào)后,教師演示:將5根筆平均分到3個(gè)杯子里里,余下的兩根怎么辦?是把余下的兩根無(wú)論放到哪個(gè)杯子里都行嗎?怎樣保證至少?

        引導(dǎo)學(xué)生知道再把兩根鉛筆平均分,分別放入兩個(gè)杯子里。

       。2)探究把15根鉛筆放在4個(gè)杯子里的結(jié)論。

        (3)、引導(dǎo)學(xué)生總結(jié)得出結(jié)論:商加1是總有一個(gè)杯子至少個(gè)數(shù)。

      抽屜原理教學(xué)設(shè)計(jì)6

        【知識(shí)技能】

        1.理解最簡(jiǎn)單的抽屜原理及抽屜原理的一般形式。

        2.引導(dǎo)學(xué)生采用操作的方法進(jìn)行枚舉及假設(shè)法探究。

        【過(guò)程方法】

        經(jīng)歷抽屜原理的探究過(guò)程,初步了解抽屜原理。

        【情感態(tài)度價(jià)值觀】

        體會(huì)數(shù)學(xué)知識(shí)在日常生活中的廣泛應(yīng)用,培養(yǎng)學(xué)生的探究意識(shí)和能力。

        【教學(xué)重、難點(diǎn)】經(jīng)歷“抽屜原理”的探究過(guò)程,理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

        【教學(xué)過(guò)程】

        一、問(wèn)題引入。

        師:同學(xué)們,你們玩過(guò)搶椅子的游戲嗎?現(xiàn)在,老師這里準(zhǔn)備了3把椅子,請(qǐng)4個(gè)同學(xué)上來(lái),誰(shuí)愿來(lái)?

        1.游戲要求:開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下。

        2.討論:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”這句話說(shuō)得對(duì)嗎?

        游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象。

        引入:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來(lái)研究這個(gè)原理。

        二、探究新知

        (一)教學(xué)例1

        1.出示題目:有4枝鉛筆,3個(gè)盒子,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?

        師:請(qǐng)同學(xué)們實(shí)際放放看,誰(shuí)來(lái)展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的`情況,師出示各種情況。

        板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),

        問(wèn)題:4個(gè)人坐在3把椅子上,不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)。4支筆放進(jìn)3個(gè)盒子里呢?

        引導(dǎo)學(xué)生得出:不管怎么放,總有一個(gè)盒子里至少有2枝筆。

        問(wèn)題:

       。1)“總有”是什么意思?(一定有)

        (2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)

        教師引導(dǎo)學(xué)生總結(jié)規(guī)律:我們把4枝筆放進(jìn)3個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。這是我們通過(guò)實(shí)際操作現(xiàn)了這個(gè)結(jié)論。那么,你們能不能找到一種更為直接的方法得到這個(gè)結(jié)論呢?

        學(xué)生思考并進(jìn)行組內(nèi)交流,教師選代表進(jìn)行總結(jié):如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。首先通過(guò)平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里一定至少有2枝”。

        問(wèn)題:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?把7枝筆放進(jìn)6個(gè)盒子里呢?把8枝筆放進(jìn)7個(gè)盒子里呢?把9枝筆放進(jìn)8個(gè)盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。)

      抽屜原理教學(xué)設(shè)計(jì)7

        教學(xué)內(nèi)容:

        教科書第68、69頁(yè)例1、2。

        教學(xué)目標(biāo):

        1、使學(xué)生經(jīng)歷將一些實(shí)際問(wèn)題抽象為代數(shù)問(wèn)題的過(guò)程,并能運(yùn)用所學(xué)知識(shí)解決有關(guān)實(shí)際問(wèn)題。

        2、能與他人交流思維過(guò)程和結(jié)果,并學(xué)會(huì)有條理地、清晰地闡述自己的觀點(diǎn)。

        教學(xué)重點(diǎn):分配方法。

        教學(xué)難點(diǎn):分配方法。

        教學(xué)方法:列舉法 分析法

        學(xué)習(xí)方法:嘗試法 自主探究法

        教學(xué)用具:課件

        教學(xué)過(guò)程:

        一、 定向?qū)W(xué)(3分)

       。ㄒ唬┯螒蛞

        師:同學(xué)們,你們玩過(guò)搶椅子的游戲嗎?現(xiàn)在,老師這里準(zhǔn)備了3把椅子,請(qǐng)4個(gè)同學(xué)上來(lái),誰(shuí)愿來(lái)?

        1、游戲要求:開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下。

        2、討論:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”這句話說(shuō)得對(duì)嗎?

        游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象。

        引入:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來(lái)研究這個(gè)原理。

       。ǘ┙沂灸繕(biāo)

        理解并掌握解決鴿巢問(wèn)題的解答方法。

        二、 自主學(xué)習(xí)(8分)

        1、看書68頁(yè),閱讀例1:把4枝鉛筆放進(jìn)3個(gè)文具盒中,可以怎么放?有幾種情況?

       。1)理解“總有”和“至少”的意思。

       。2)理解4種放法。

        2、全班同學(xué)交流思維的過(guò)程和結(jié)果。

        3、跟蹤練習(xí)。

        68頁(yè)做一做:5只鴿子飛回3個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?

       。1)說(shuō)出想法。

        如果每個(gè)鴿舍只飛進(jìn)1只鴿子,最多飛回3只鴿子,剩下2只鴿子還要飛進(jìn)其中的一個(gè)鴿舍或分別飛進(jìn)其中的兩個(gè)鴿舍。所以至少有2只鴿子飛進(jìn)同一個(gè)鴿舍。

       。2)嘗試分析有幾種情況。

       。3)說(shuō)一說(shuō)你有什么體會(huì)。

        三、合作交流(8)

        1、出示例2

        把7本書放進(jìn)3個(gè)抽屜中,不管怎么放,總有一個(gè)抽屜至少放進(jìn)幾本書?(1)合作交流有幾種放法。

        不難得出,總有一個(gè)抽屜至少放進(jìn)3本。

       。2)指名說(shuō)一說(shuō)思維過(guò)程。

        如果每個(gè)抽屜放2本,放了6本書。剩下的1本還要放進(jìn)其中一個(gè)抽屜,所以至少有1個(gè)抽屜放進(jìn)3本書。

        2、如果一共有8本書會(huì)怎樣呢10本呢?

        3、你能用算式表示以上過(guò)程嗎?你有什么發(fā)現(xiàn)?

        7÷3=2……1 (至少放3本)

        8÷3=2……2 (至少放4本)

        10÷3=3……1 (至少放5本)

        4、做一做

        11只鴿子飛回4個(gè)鴿舍,至少有3只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?

        四、質(zhì)疑探究(5分)

        1、鴿巢問(wèn)題怎樣求?

        小結(jié):先平均分配,再把余數(shù)進(jìn)行分配,得出的'就是一個(gè)抽屜至少放進(jìn)的本數(shù)。

        2、做一做。

        69頁(yè)做一做2題。

        五、小結(jié)檢測(cè)(10)

       。ㄒ唬┬〗Y(jié)

        鴿巢問(wèn)題的解答方法是什么?

        物體的數(shù)量大于抽屜的數(shù)量,總有一個(gè)抽屜里至少放進(jìn)(商+1)個(gè)物體。

        (二)檢測(cè)

        1、填空

       。 1)7只鴿子飛進(jìn)5個(gè)鴿舍,至少有( )只鴿子要飛進(jìn)同伴的鴿舍里。

       。 2)有9本書,要放進(jìn)2個(gè)抽屜里,必須有一個(gè)抽屜至少要放( )本書。

       。3)四年級(jí)兩個(gè)班共有73名學(xué)生,這兩個(gè)班的學(xué)生至少有( )人是同一月出生的。 4、任意給出3個(gè)不同的自然數(shù),其中一定有2個(gè)數(shù)的和是( )數(shù)。

        2、選擇

        (1)5個(gè)人逛商店共花了301元錢,每人花的錢數(shù)都是整數(shù),其中至少有一人花的錢數(shù)不低于( )元。 a、60 b、61 c、62 d、59

        (2)3種商品的總價(jià)是13元,每種商品的價(jià)格都是整數(shù),至少有一種商品的價(jià)格不低于( )元。 a、3 b、4 c、5 d、無(wú)法確定

        3、幼兒園老師準(zhǔn)備把15本圖畫書分給14個(gè)小朋友,結(jié)果是什么?

        六、作業(yè) (6分)

        完成課本練習(xí)十二第2、4題。

        板書

        抽屜原理

        物體的數(shù)量大于抽屜的數(shù)量,總有一個(gè)抽屜至少放進(jìn)(商+1)物體。

      抽屜原理教學(xué)設(shè)計(jì)8

        【教學(xué)內(nèi)容】

        《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)》六年級(jí)下冊(cè)。

        【教材分析】

        讓學(xué)生初步了解簡(jiǎn)單“抽屜原理”,教材借助把4枝鉛筆放進(jìn)3個(gè)文具盒中的操作情景,介紹了較簡(jiǎn)單的“抽屜原理”,通過(guò)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題,初步感受數(shù)學(xué)的魅力。主要培養(yǎng)學(xué)生的思考和推理能力,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)原理”的過(guò)程,提高學(xué)生數(shù)學(xué)應(yīng)用意識(shí)。

        【學(xué)情分析】

        教材借助把4枝鉛筆放進(jìn)3個(gè)文具盒中的操作情景,介紹了較簡(jiǎn)單的“抽屜原理”。學(xué)生在操作實(shí)物的過(guò)程中可以發(fā)現(xiàn)一個(gè)現(xiàn)象:不管怎么放,總有一個(gè)文具盒里至少放進(jìn)2枝鉛筆,從而產(chǎn)生疑問(wèn),激起尋求答案的欲望。為了解釋這一現(xiàn)象,教材呈現(xiàn)了枚舉。

        【教學(xué)目標(biāo)】

        1.經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。

        2.通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

        3.通過(guò)“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

        【教學(xué)重點(diǎn)】

        經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”。

        【教學(xué)難點(diǎn)】

        理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

        【教具、學(xué)具準(zhǔn)備】

        每組都有3個(gè)文具盒和4枝鉛筆。

        【教學(xué)過(guò)程】

        一、談話導(dǎo)入

        教師:同學(xué)們,你們?cè)陔娔X上玩過(guò)“電腦算命”嗎?“電腦算命”看起來(lái)很深?yuàn)W,只要報(bào)出你的出生的年、月、日和性別,一按鍵,屏幕上就會(huì)出現(xiàn)所謂性格、命運(yùn)、財(cái)運(yùn)等。通過(guò)今天的學(xué)習(xí),我們掌握了“抽屜原理”之后,你就不難證明這種“電腦算命”是非?尚突奶频模遣荒苄诺墓戆褢。

        板書:抽屜原理

        教師:通過(guò)學(xué)習(xí),你想解決那些問(wèn)題?

        根據(jù)學(xué)生回答,教師把學(xué)生提出的問(wèn)題歸結(jié)為:“抽屜原理”是怎樣的?這里的“抽屜”是指什么?運(yùn)用“抽屜原理”能解決那些問(wèn)題?怎樣運(yùn)用“抽屜原理”解決實(shí)際問(wèn)題?

        二、通過(guò)操作,探究新知

       。ㄒ唬┱J(rèn)識(shí)“抽屜原理”

        出示題目:有3枝鉛筆,2個(gè)盒子,把3枝鉛筆放進(jìn)2個(gè)盒子里,怎么放?有幾種不同的放法?

        師:請(qǐng)同學(xué)們實(shí)際放放看,誰(shuí)來(lái)展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況(3,0)(2,1)

        師:5個(gè)人坐在4把椅子上,不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)。3支筆放進(jìn)2個(gè)盒子里呢?

        生:不管怎么放,總有一個(gè)盒子里至少有2枝筆?

        師:是這樣嗎?誰(shuí)還有這樣的發(fā)現(xiàn),再說(shuō)一說(shuō)。

        師:那么,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?請(qǐng)同學(xué)們實(shí)際放放看。(師巡視,了解情況,個(gè)別指導(dǎo))

        師:誰(shuí)來(lái)展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況。

       。4,0,0)(3,1,0) (2,2,0)(2,1,1),

        師:還有不同的放法嗎?

        生:沒有了。

        師:你能發(fā)現(xiàn)什么?

        生:不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

        師:“總有”是什么意思?

        生:一定有

        師:“至少”有2枝什么意思?

        生:不少于兩只,可能是2枝,也可能是多于2枝?

        師:就是不能少于2枝。(通過(guò)操作讓學(xué)生充分體驗(yàn)感受)

        師:把3枝筆放進(jìn)2個(gè)盒子里,和把4枝筆飯放進(jìn)3個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。這是我們通過(guò)實(shí)際操作現(xiàn)了這個(gè)結(jié)論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個(gè)結(jié)論呢?

        學(xué)生思考——組內(nèi)交流——匯報(bào)

        師:哪一組同學(xué)能把你們的想法匯報(bào)一下?

        組1生:我們發(fā)現(xiàn)如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。

        師:你能結(jié)合操作給大家演示一遍嗎?(學(xué)生操作演示)

        師:同學(xué)們自己說(shuō)說(shuō)看,同位之間邊演示邊說(shuō)一說(shuō)好嗎?

        師:這種分法,實(shí)際就是先怎么分的?

        生眾:平均分

        師:為什么要先平均分?(組織學(xué)生討論)

        生1:要想發(fā)現(xiàn)存在著“總有一個(gè)盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里一定至少有2枝”。

        生2:這樣分,只分一次就能確定總有一個(gè)盒子至少有幾枝筆了?

        師:同意嗎?那么把5枝筆放進(jìn)4個(gè)盒子里呢?(可以結(jié)合操作,說(shuō)一說(shuō))

        師:哪位同學(xué)能把你的想法匯報(bào)一下,

        生:(一邊演示一邊說(shuō))5枝鉛筆放在4個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

        師:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?

        生:6枝鉛筆放在5個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

        師:把7枝筆放進(jìn)6個(gè)盒子里呢?

        把8枝筆放進(jìn)7個(gè)盒子里呢?

        把9枝筆放進(jìn)8個(gè)盒子里呢?……

        你發(fā)現(xiàn)什么?

        生1:筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

        師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說(shuō)一遍。

       。ǘ┨骄啃轮

        1.出示題目:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

        把7本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

        把9本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

       。艚o學(xué)生思考的空間,師巡視了解各種情況)

        2.學(xué)生匯報(bào)。

        生1:把5本書放進(jìn)2個(gè)抽屜里,如果每個(gè)抽屜里先放2本,還剩1本,這本書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書。

        板書:5本2個(gè)2本……余1本(總有一個(gè)抽屜里至有3本書)

        7本2個(gè)3本……余1本(總有一個(gè)抽屜里至有4本書)

        9本2個(gè)4本……余1本(總有一個(gè)抽屜里至有5本書)

        師:2本、3本、4本是怎么得到的?生答完成除法算式。

        5÷2=2本……1本(商加1)

        7÷2=3本……1本(商加1)

        9÷2=4本……1本(商加1)

        師:觀察板書你能發(fā)現(xiàn)什么?

        生1:“總有一個(gè)抽屜里的至少有2本”只要用“商+1”就可以得到。

        師:如果把5本書放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

        生:“總有一個(gè)抽屜里的至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。

        生:不同意!先把5本書平均分放到3個(gè)抽屜里,每個(gè)抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個(gè)抽屜里,總有一個(gè)抽屜里至少有2本書,不是3本書。

        師:到底是“商+1”還是“商+余數(shù)”呢?誰(shuí)的結(jié)論對(duì)呢?在小組里進(jìn)行研究、討論。

        交流、說(shuō)理活動(dòng):

        生1:我們組通過(guò)討論并且實(shí)際分了分,結(jié)論是總有一個(gè)抽屜里至少有2本書,不是3本書。

        生2:把5本書平均分放到3個(gè)抽屜里,每個(gè)抽屜里先放1本,余下的2本可以在2個(gè)抽屜里再各放1本,結(jié)論是“總有一個(gè)抽屜里至少有2本書”。

        生3我們組的結(jié)論是5本書平均分放到3個(gè)抽屜里,“總有一個(gè)抽屜里至少有2本書”用“商加1”就可以了,不是“商加2”。

        師:現(xiàn)在大家都明白了吧?那么怎樣才能夠確定總有一個(gè)抽屜里至少有幾個(gè)物體呢?

        生4:如果書的本數(shù)是奇數(shù),用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會(huì)發(fā)現(xiàn)“總有一個(gè)抽屜里至少有商加1本書”了。

        師:同學(xué)們同意吧?

        師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問(wèn)題中有著廣泛的'應(yīng)用。“抽屜原理”的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問(wèn)題。

        3.解決問(wèn)題。71頁(yè)第3題。(獨(dú)立完成,交流反饋)

        小結(jié):經(jīng)過(guò)剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡(jiǎn)單的思維過(guò)程,我們獲得了解決這類問(wèn)題的好辦法,下面讓我們輕松一下做個(gè)小游戲。

        三、應(yīng)用原理解決問(wèn)題

        師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請(qǐng)五位同學(xué)每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請(qǐng)大家猜測(cè)一下,同種花色的至少有幾張?為什么?

        生:2張/因?yàn)?÷4=1…1

        師:先驗(yàn)證一下你們的猜測(cè):舉牌驗(yàn)證。

        師:如有3張同花色的,符合你們的猜測(cè)嗎?

        師:如果9個(gè)人每一個(gè)人抽一張呢?

        生:至少有3張牌是同一花色,因?yàn)?÷4=2…1

        四、全課小結(jié)

        上面我們所證明的數(shù)學(xué)原理就是最簡(jiǎn)單的“抽屜原理”,可以概括為:把m個(gè)物體任意放到m-1個(gè)抽屜里,那么總有一個(gè)抽屜中放進(jìn)了至少2個(gè)物體。

        五、思維訓(xùn)練

        1.從街上隨便找來(lái)13人,就可以斷定他們中至少有兩個(gè)人屬相(指鼠、牛、虎、兔……十二種生肖)相同。說(shuō)明理由。

        2.任意367名學(xué)生中,一定存在兩名學(xué)生,他們?cè)谕惶爝^(guò)生日。說(shuō)明理由。

        【教學(xué)反思】

        1、小組活動(dòng)很容易抓住學(xué)生的注意力,讓學(xué)生覺得這節(jié)課要探究的問(wèn)題即好玩又有意義。

        2、理解“抽屜原理”對(duì)于學(xué)生來(lái)說(shuō)有著一定的難度。

        3、部分學(xué)生很難判斷誰(shuí)是物體,誰(shuí)是抽屜。

      抽屜原理教學(xué)設(shè)計(jì)9

        教學(xué)目標(biāo):

        1.使學(xué)生能理解抽取問(wèn)題中的一些基本原理,并能解決有關(guān)簡(jiǎn)單的問(wèn)題。

        2.體會(huì)數(shù)學(xué)與日常生活的'聯(lián)系,了解數(shù)學(xué)的價(jià)值,增強(qiáng)應(yīng)用數(shù)學(xué)的意識(shí)。

        教學(xué)重點(diǎn):

        抽取問(wèn)題。

        教學(xué)難點(diǎn):

        理解抽取問(wèn)題的基本原理。

        教學(xué)過(guò)程:

        一、創(chuàng)設(shè)情境,復(fù)習(xí)舊知

        1、出示復(fù)習(xí)題:

        師:老師這兒有一個(gè)問(wèn)題,不知道哪位同學(xué)能幫助解答一下?

        2、課件出示:把3個(gè)蘋果放進(jìn)2個(gè)抽屜里,總有一個(gè)抽屜至少放2個(gè)蘋果,為什么?

        3、學(xué)生自由回答。

      抽屜原理教學(xué)設(shè)計(jì)10

        教學(xué)目標(biāo)

        1.經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。

        2.通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

        3.通過(guò)“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

        教學(xué)重、難點(diǎn)

        經(jīng)歷“抽屜原理”的探究過(guò)程,理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

        教學(xué)過(guò)程

        一、問(wèn)題引入。

        師:同學(xué)們,你們玩過(guò)搶椅子的游戲嗎?現(xiàn)在,老師這里準(zhǔn)備了3把椅子,請(qǐng)4個(gè)同學(xué)上來(lái),誰(shuí)愿來(lái)?

        1.游戲要求:開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下。

        2.討論:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”這句話說(shuō)得對(duì)嗎?

        游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象。

        引入:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來(lái)研究這個(gè)原理。

        二、探究新知

       。ㄒ唬┙虒W(xué)例1

        1.出示題目:有4枝鉛筆,3個(gè)盒子,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?

        師:請(qǐng)同學(xué)們實(shí)際放放看,誰(shuí)來(lái)展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師出示各種情況。

        板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),

        問(wèn)題:4個(gè)人坐在3把椅子上,不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)。4支筆放進(jìn)3個(gè)盒子里呢?

        引導(dǎo)學(xué)生得出:不管怎么放,總有一個(gè)盒子里至少有2枝筆。

        問(wèn)題:

       。1)“總有”是什么意思?(一定有)

       。2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)

        教師引導(dǎo)學(xué)生總結(jié)規(guī)律:我們把4枝筆放進(jìn)3個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。這是我們通過(guò)實(shí)際操作現(xiàn)了這個(gè)結(jié)論。那么,你們能不能找到一種更為直接的方法得到這個(gè)結(jié)論呢?

        學(xué)生思考并進(jìn)行組內(nèi)交流,教師選代表進(jìn)行總結(jié):如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。首先通過(guò)平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里一定至少有2枝”。

        問(wèn)題:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?把7枝筆放進(jìn)6個(gè)盒子里呢?把8枝筆放進(jìn)7個(gè)盒子里呢?把9枝筆放進(jìn)8個(gè)盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。)

        總結(jié):只要放的鉛筆數(shù)盒數(shù)多1,總有一個(gè)盒里至少放進(jìn)2支。

        2.完成課下“做一做”,學(xué)習(xí)解決問(wèn)題。

        問(wèn)題:6只鴿子飛回5個(gè)鴿籠,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?

       。1)學(xué)生活動(dòng)—獨(dú)立思考自主探究

        (2)交流、說(shuō)理活動(dòng)。

        引導(dǎo)學(xué)生分析:如果一個(gè)鴿籠里飛進(jìn)一只鴿子,最多飛進(jìn)4只鴿子,還剩一只,要飛進(jìn)其中的一個(gè)鴿籠里。不管怎么飛,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里。所以,“至少有2只鴿子飛進(jìn)同一個(gè)籠里”的結(jié)論是正確的。

        總結(jié):用平均分的方法,就能說(shuō)明存在“總有一個(gè)鴿籠至少有2只鴿子飛進(jìn)一個(gè)個(gè)籠里”。

       。ǘ┙虒W(xué)例2

        1.出示題目:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?把7本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?把9本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

       。艚o學(xué)生思考的空間,師巡視了解各種情況)

        2.學(xué)生匯報(bào),教師給予表?yè)P(yáng)后并總結(jié):

        總結(jié)1:把5本書放進(jìn)2個(gè)抽屜里,如果每個(gè)抽屜里先放2本,還剩1本,這本書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書。

        總結(jié)2:“總有一個(gè)抽屜里的至少有2本”只要用“商+1”就可以得到。

        問(wèn)題:如果把5本書放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?用“商+2”可以嗎?(學(xué)生討論)

        引導(dǎo)學(xué)生思考:到底是“商+1”還是“商+余數(shù)”呢?誰(shuí)的結(jié)論對(duì)呢?(學(xué)生小組里進(jìn)行研究、討論。)

        總結(jié):用書的.本數(shù)除以抽屜數(shù),再用所得的商加1,就會(huì)發(fā)現(xiàn)“總有一個(gè)抽屜里至少有商加1本書”了。

        師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用。“抽屜原理”的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問(wèn)題。

        (三)學(xué)生自學(xué)例題3并進(jìn)行自主交流,試著用手中的用具模擬演示場(chǎng)景。

        三、解決問(wèn)題

        四、全課小結(jié)

      抽屜原理教學(xué)設(shè)計(jì)11

        一、教學(xué)設(shè)計(jì)

        1.教材分析

        《抽屜原理》是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)六年級(jí)下冊(cè)第五單元數(shù)學(xué)廣角的教學(xué)內(nèi)容。這部分教材通過(guò)幾個(gè)直觀例子,借助實(shí)際操作,向?qū)W生介紹“抽屜原理”,使學(xué)生在理解“抽屜原理”這一數(shù)學(xué)方法的基礎(chǔ)上,對(duì)一些簡(jiǎn)單的實(shí)際問(wèn)題加以“模型化”,會(huì)用“抽屜原理”加以解決。

        2.學(xué)情分析

        “抽屜原理”在生活中運(yùn)用廣泛,學(xué)生在生活中常常能遇到實(shí)例,但并不能有意識(shí)地從數(shù)學(xué)的角度來(lái)理解和運(yùn)用“抽屜原理”。教學(xué)中應(yīng)有意識(shí)地讓學(xué)生理解“抽屜原理”的“一般化模型”。六年級(jí)學(xué)生的邏輯思維能力、小組合作能力和動(dòng)手操作能力都有了較大的提高,加上已有的生活經(jīng)驗(yàn),很容易感受到用“抽屜原理”解決問(wèn)題帶來(lái)的樂趣。

        3.教學(xué)理念

        激趣是新課導(dǎo)入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學(xué)生置身游戲中開始學(xué)習(xí),為理解抽屜原理埋下伏筆。通過(guò)小組合作,動(dòng)手操作的探究性學(xué)習(xí)把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W(xué)生感興趣又易于理解的內(nèi)容。特別是對(duì)教材中的結(jié)論“總有、至少”等字詞作了充分的闡釋,幫助學(xué)生進(jìn)行較好的“建!,使復(fù)雜問(wèn)題簡(jiǎn)單化,簡(jiǎn)單問(wèn)題模型化,充分體現(xiàn)了新課標(biāo)要求。

        4.教學(xué)目標(biāo)1.經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。

        2.通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

        3.通過(guò)“抽屜原理”的`靈活應(yīng)用感受數(shù)學(xué)的魅力。

        5.教學(xué)重難點(diǎn)

        重點(diǎn):經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”。

        難點(diǎn):理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

        6.教學(xué)過(guò)程

        一、課前游戲引入。

        上課前,我們先來(lái)熱身一下,一起來(lái)玩搶椅子的游戲。

        這有4把椅子,請(qǐng)5位同學(xué)上來(lái)參加游戲,游戲規(guī)則是:在老師說(shuō)開始時(shí),5位同學(xué)繞著椅子走,當(dāng)老師說(shuō)停的,5位同學(xué)都要坐在椅子上。

        為什么總有一張椅子至少坐兩個(gè)同學(xué)?

        在這個(gè)游戲中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理叫做抽屜理原,這節(jié)課我們就一起來(lái)研究抽屜理原。(板書課題)

        二、通過(guò)操作,探究新知

        (一)探究物體數(shù)比抽屜數(shù)多1的情況

        1、把3根小棒放進(jìn)2個(gè)杯子中,有幾種不同的放法?(1)同桌合作,想一想,擺一擺,并記錄下來(lái)。

       。2)反饋:兩種放法:(3,0)和(2,1)。

        (3)從兩種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)杯子中至少放進(jìn)2根小棒)你是怎么發(fā)現(xiàn)的?

       。4)“總有”什么意思?(一定有)

       。5)“至少”有2根什么意思?(不少于2根)

        小結(jié):把3根小棒放進(jìn)2個(gè)杯子中,不管怎么放,總有一個(gè)杯子中至少放進(jìn)了2根小棒。

        2、要把4根小棒放進(jìn)3個(gè)杯子里,有幾種放法?

       。1)請(qǐng)同學(xué)們動(dòng)手?jǐn)[一擺,再把你的想法在小組內(nèi)交流。

       。2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

       。3)從四種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)杯子里至少有2根小棒)

        (4)你是怎么發(fā)現(xiàn)的?

        (5)大家通過(guò)枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個(gè)杯子里放進(jìn)了2根小棒”。

        3、類推:把6根小棒放入5個(gè)杯子中,總有一個(gè)杯子中至少有幾根小棒,為什么?

        還用不用把所有的擺法再一一列舉出來(lái),有什么方法只擺一次就能證明這個(gè)結(jié)論。(平均分)

        為什么用平均分的方法就能證明這個(gè)結(jié)論?余下的小棒怎么分?

        怎樣用算式表示?(6÷5=11,商1表示什么,余1又表示什么?)把7枝鉛筆放進(jìn)6個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

        把100枝鉛筆放進(jìn)99個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

        4、從剛才我們的探究活動(dòng)中,你有什么發(fā)現(xiàn)?(當(dāng)物體數(shù)比抽屜數(shù)多1,就總有一個(gè)抽屜中至少放進(jìn)了2個(gè)物體。)

        7、在我們的生活中,常常會(huì)遇到抽屜原理,你能不能舉個(gè)例子?在課前我們玩的游戲中,有沒有抽屜原理?

        過(guò)渡:同學(xué)們非常了不起,善于運(yùn)用觀察、分析、思考、推理、證明的方法研究問(wèn)題,得出結(jié)論。同學(xué)們的思維也在不知不覺中提升了許多,那么讓我們?cè)賮?lái)研究這樣一組問(wèn)題。

       。ǘ┨骄课矬w數(shù)比抽屜數(shù)多幾倍還多的情況

        1、研究把5根小棒放進(jìn)3個(gè)杯子

        (1)把5根小棒放進(jìn)3個(gè)杯子,總有一個(gè)杯子中至少有幾根小棒?

       。2)可以怎樣分,用平均分的方法證明一下。先在每個(gè)抽屜里放進(jìn)2本,剩下的1本放進(jìn)任何一個(gè)抽屜,這個(gè)抽屜就有3本書了。

        (4)可以把我們的想法用算式表示出來(lái):5÷3=1…2(商1表示什么,余數(shù)2表示什么)2+1=3表示什么?

        2、類推:如果把9根小棒放進(jìn)4個(gè)杯子中,15根小棒也放進(jìn)4個(gè)杯子中,會(huì)有什么結(jié)論?

        3、怎樣求至少數(shù)?(商+1)

        3、小結(jié):當(dāng)物體數(shù)比抽屜數(shù)多幾倍還多的情況,用物體數(shù)除以抽屜數(shù),有余數(shù)時(shí),至少數(shù)=商+1.

        4、經(jīng)過(guò)剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡(jiǎn)單的思維過(guò)程,個(gè)個(gè)都是了不起的數(shù)學(xué)家。 “抽屜原理”最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用!俺閷显怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。

        5、做一做:

       。1)8只鴿子飛回3個(gè)鴿舍,至少有3只鴿子要飛時(shí)同一個(gè)鴿舍里。為什么?

       。ㄏ茸寣W(xué)生獨(dú)立思考,在小組里討論,再全班反饋)

       。2)11個(gè)小朋友同行,其中至少有幾個(gè)小朋友性別相同?

       。3)從電影院任意找來(lái)15個(gè)觀眾,至少有幾個(gè)人屬相相同?

       。ㄕ业筋}中什么當(dāng)抽屜,物體數(shù)是多少,運(yùn)用抽屜原理列出算式,并解釋原因)

        三、遷移與拓展

        1、下面我們一起來(lái)放松一下,做個(gè)小游戲。

        我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請(qǐng)五位同學(xué)每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請(qǐng)大家猜測(cè)一下,同種花色的至少有幾張?為什么?

        2、用三種顏色給正方體的各面涂色(每面只涂一種顏色),請(qǐng)你證明至少有兩個(gè)面涂

        色相同。

        得出結(jié)論:當(dāng)物體數(shù)除以抽屜數(shù),整除時(shí),至少數(shù)=商

        四、總結(jié)全課這節(jié)課,你有什么收獲?

        二、教學(xué)反思

        新一輪的課程改革,把原本在奧數(shù)教材中出現(xiàn)的一些開發(fā)智力、開闊視野的數(shù)學(xué)思維訓(xùn)練內(nèi)容也加入到數(shù)學(xué)教材中,以“數(shù)學(xué)廣角”單元的形式出現(xiàn)。“抽屜原理”是六年級(jí)下冊(cè)內(nèi)容,應(yīng)用很廣泛且靈活多變,可以解決一些看上去很復(fù)雜、覺得無(wú)從下手,卻又是相當(dāng)有趣的數(shù)學(xué)問(wèn)題。但對(duì)于小學(xué)生來(lái)說(shuō),理解和掌握“抽屜原理”還存在著一定的難度。這對(duì)我們數(shù)學(xué)教師的教學(xué)提出了挑戰(zhàn)。通過(guò)課堂實(shí)踐,感受頗深,反思我的教學(xué)過(guò)程,有幾下幾點(diǎn)可取之處:

        1、創(chuàng)設(shè)情境,從學(xué)生熟悉的素材開始激發(fā)興趣,

        興趣是最好的老師。課前“搶凳子”游戲,簡(jiǎn)單卻能真實(shí)的反映“抽屜原理”的本質(zhì)。通過(guò)猜測(cè),一下就抓住學(xué)生的注意力,讓學(xué)生覺得這節(jié)課要探究的問(wèn)題,好玩又有意義。

        2、建立模型,本節(jié)課充分放手,讓學(xué)生自主思考,恰當(dāng)引導(dǎo)

        教師是學(xué)生的合作者,引導(dǎo)者。在活動(dòng)設(shè)計(jì)中,我注重學(xué)生經(jīng)歷知識(shí)產(chǎn)生、形成的過(guò)程。4根小棒放進(jìn)3個(gè)杯子的結(jié)果早就可想而知,但讓學(xué)生通過(guò)放一放、想一想、議一議的過(guò)程,把抽象的說(shuō)理用具體的實(shí)物演示出來(lái),化抽象為具體,發(fā)現(xiàn)并描述、理解了最簡(jiǎn)單的“抽屜原理”。在此基礎(chǔ)上,我又主動(dòng)提問(wèn):還有什么有價(jià)值的問(wèn)題研究嗎?讓學(xué)生自主的想到:小棒數(shù)比杯子數(shù)多2或其它數(shù)會(huì)怎么樣?來(lái)繼續(xù)開展探究活動(dòng),同時(shí),通過(guò)活動(dòng)結(jié)合板書引導(dǎo)學(xué)生歸納出求至少數(shù)的方法。

        3、解釋應(yīng)用,深化知識(shí)。

        學(xué)了“抽屜原理”有什么用?能解決生活中的什么問(wèn)題,這就要求在教學(xué)中要注重聯(lián)系學(xué)生的生活實(shí)際。在試一試環(huán)節(jié)里,我設(shè)計(jì)了一組簡(jiǎn)單、真實(shí)的生活情境,讓學(xué)生用學(xué)過(guò)的知識(shí)來(lái)解釋這些現(xiàn)象,有效的將學(xué)生的自主探究學(xué)習(xí)延伸到課外,體現(xiàn)了“數(shù)學(xué)來(lái)源于生活,又還原于生活”的理念。

        教學(xué)永遠(yuǎn)是一門遺憾的藝術(shù)。回顧整節(jié)課我覺得還有許多不足之處,學(xué)生對(duì)至少數(shù)的理解還很模糊,只是按照程式推導(dǎo)出至少數(shù)的求法,并沒有真正體會(huì)出抽屜原理的本質(zhì)。沒有給學(xué)生足夠思考的空間,只是有部分學(xué)生說(shuō)出就給出結(jié)論,面向的應(yīng)是全體學(xué)生,這是在我教學(xué)過(guò)程中還應(yīng)加強(qiáng)的部分。

      抽屜原理教學(xué)設(shè)計(jì)12

        教學(xué)內(nèi)容

        人教版標(biāo)準(zhǔn)試驗(yàn)教材小學(xué)數(shù)學(xué)六年制第十二冊(cè)“數(shù)學(xué)廣角”例

        1、例2及相關(guān)內(nèi)容。

        教材編排特點(diǎn)

        1、教材借助例1(把4枝鉛筆放進(jìn)3個(gè)文具盒)中的操作情境,介紹了一類較簡(jiǎn)單的“抽屜問(wèn)題”。學(xué)生在操作實(shí)物的過(guò)程中可以發(fā)現(xiàn)一個(gè)現(xiàn)象:不管怎么放,總有一個(gè)文具盒里至少放進(jìn)2枝鉛筆,從而產(chǎn)生疑問(wèn),激起尋求答案的欲望。在這里,“4枝鉛筆”就是“4個(gè)要分放的物體”,“3個(gè)文具盒”就是“3個(gè)抽屜”,這個(gè)問(wèn)題用“抽屜問(wèn)題”的語(yǔ)言來(lái)描述就是:把4個(gè)物體放進(jìn)3個(gè)抽屜,總有一個(gè)抽屜至少有2個(gè)物體。

        為了解釋這一現(xiàn)象,教材呈現(xiàn)了兩種思考方法。第一種方法是用操作的方法進(jìn)行枚舉。通過(guò)直觀地?cái)[鉛筆,發(fā)現(xiàn)把4枝鉛筆分配到3個(gè)文具盒中一共只有四種情況(在這里,只考慮存在性問(wèn)題,即把4枝鉛筆不管放進(jìn)哪個(gè)文具盒,都視為同一種情況)。在每一種情況中,都一定有一個(gè)文具盒中至少有2枝鉛筆。通過(guò)羅列實(shí)驗(yàn)的所有結(jié)果,就可以解釋前面提出的疑問(wèn)。為了對(duì)這類“抽屜問(wèn)題”有更深的理解,教材在“做一做”中安排了一個(gè)“鴿巢問(wèn)題”,只是數(shù)據(jù)比例題的稍大。學(xué)生可以利用例題中的方法遷移類推,加以解釋。

        2、例2介紹了另一種類型的“抽屜問(wèn)題”,即“把多于個(gè)的物體任意分放進(jìn)個(gè)空抽屜(是正整數(shù)),那么一定有一個(gè)抽屜中放進(jìn)了至少(+1)個(gè)物體!睂(shí)際上,如果設(shè)定=1,這類“抽屜問(wèn)題”就變成了例1的形式。因此,這兩類“抽屜問(wèn)題”在本質(zhì)上是一致的,例1只是例2的一個(gè)特例。教材提供了讓學(xué)生把5本書放進(jìn)2個(gè)抽屜的情境,在操作的過(guò)程中,學(xué)生發(fā)現(xiàn)不管怎么放,總有一個(gè)抽屜至少放進(jìn)3本書,從而產(chǎn)生探究原因的愿望。學(xué)生仍然可以采用枚舉的方法,把5分解成兩個(gè)數(shù),有(5,0),(4,1),(3,2)三種情況。在任何一種結(jié)果中,總有一個(gè)數(shù)不小于3。更具一般性的仍然是假設(shè)的方法,即先把5本書“平均分成2份”。利用有余數(shù)除法5÷2=2??1可以發(fā)現(xiàn),如果每個(gè)抽屜放進(jìn)2本,還剩1本。把剩下的這1本放進(jìn)任何一個(gè)抽屜,該抽屜里就有3本書了。

        研究了“把5本書放進(jìn)2個(gè)抽屜”的問(wèn)題后,教材又進(jìn)一步提出“如果一共有7本書,9本書,情況會(huì)怎樣?”的問(wèn)題,讓學(xué)生利用前面的方法進(jìn)行類推,得出“7本書放進(jìn)2個(gè)抽屜,總有一個(gè)抽屜至少放進(jìn)4本書,9本書放進(jìn)2個(gè)抽屜,總有一個(gè)抽屜至少放進(jìn)5本書”的結(jié)論。

        在此基礎(chǔ)上,讓學(xué)生觀察這幾個(gè)“抽屜問(wèn)題”的特點(diǎn),尋找規(guī)律,使學(xué)生對(duì)這一類“抽屜原理”達(dá)到一般性的理解。例如,學(xué)生可以通過(guò)觀察,歸納出“要把(是奇數(shù))本書放進(jìn)2個(gè)抽屜,如果÷2=??1,那么總有一個(gè)抽屜至少有(+1)本書”的一般性結(jié)論。教材第69頁(yè)的“做一做”延續(xù)了第68頁(yè)“做一做”的情境,在例2的基礎(chǔ)上有所擴(kuò)展,把 “抽屜數(shù)”變成了3,要求學(xué)生在例2思考方法的基礎(chǔ)上進(jìn)行遷移類推。

        設(shè)計(jì)理念

        興趣是最好的老師,喜歡和好奇心比什么都重要,以“搶座位”,讓學(xué)生置身游戲中開始學(xué)習(xí),為理解抽屜原理埋下伏筆。通過(guò)小組合作、動(dòng)手操作的探究性學(xué)習(xí)和“鴿子進(jìn)巢”模擬想象事情情景的發(fā)生把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W(xué)生感興趣又易于理解的內(nèi)容,從而牽引出“平均分”這個(gè)更具一般性的方法。特別是對(duì)教材中的結(jié)論“總有、至少”等字詞作了充分的闡釋,幫助學(xué)生進(jìn)行較好的“建!保箯(fù)雜問(wèn)題簡(jiǎn)單化,簡(jiǎn)單問(wèn)題模型化,充分體現(xiàn)了新課標(biāo)要求。

        教材內(nèi)容分析

        《抽屜原理》是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)六年級(jí)下冊(cè)第五單元數(shù)學(xué)廣角的教學(xué)內(nèi)容。這部分教材通過(guò)幾個(gè)直觀例子,借助實(shí)際操作,向?qū)W生介紹“抽屜原理”,使學(xué)生在理解“抽屜原理”這一數(shù)學(xué)方法的基礎(chǔ)上,對(duì)一些簡(jiǎn)單的實(shí)際問(wèn)題加以“模型化”,會(huì)用“抽屜原理”加以解決。在數(shù)學(xué)問(wèn)題中有一類與“存在性”有關(guān)的'問(wèn)題,在這類問(wèn)題中,只需要確定某個(gè)物體(或某個(gè)人)的存在就可以了,并不需要指出是哪個(gè)物體(或哪個(gè)人),也不需要說(shuō)明是通過(guò)什么方式把這個(gè)存在的物體(或人)找出來(lái)。這類問(wèn)題依據(jù)的理論,我們稱之為“抽屜原理”!俺閷显怼弊钕仁怯19世紀(jì)的德國(guó)數(shù)學(xué)家狄里克雷(Dirichlet)運(yùn)用于解決數(shù)學(xué)問(wèn)題的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”!俺閷显怼钡睦碚摫旧聿⒉粡(fù)雜,甚至可以說(shuō)是顯而易見的。例如,要把三本書放進(jìn)兩個(gè)抽屜,至少有一個(gè)抽屜里有兩本書。這樣的道理對(duì)于小學(xué)生來(lái)說(shuō),也是很容易理解的。但“抽屜原理”的應(yīng)用卻是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。因此,“抽屜原理”在數(shù)論、集合論、組合論中都得到了廣泛的應(yīng)用。

        本單元用直觀的方式,介紹了“抽屜原理”的兩種形式。例1描述的是最簡(jiǎn)單的“抽屜原理”——把

        個(gè)物體任意分放進(jìn)個(gè)空抽屜里(>,是非0自然數(shù)),那么一定有一個(gè)抽屜中放進(jìn)了至少2個(gè)物體。例2描述了“抽屜原理”更為一般的形式:把多于

        個(gè)物體任意分放進(jìn)個(gè)空抽屜里(是正整數(shù)),那么一定有一個(gè)抽屜中放進(jìn)了至少(+1)個(gè)物體。

        教學(xué)對(duì)象分析

        “抽屜原理”在生活中運(yùn)用廣泛,學(xué)生在生活中常常能遇到實(shí)例,但并不能有意識(shí)地從數(shù)學(xué)的角度來(lái)理解和運(yùn)用“抽屜原理”。教學(xué)中應(yīng)有意識(shí)地讓學(xué)生理解“抽屜原理”的“一般化模型”。六年級(jí)學(xué)生的邏輯思維能力、小組合作能力和動(dòng)手操作能力都有了較大的提高,加上已有的生活經(jīng)驗(yàn),很容易感受到用“抽屜原理”解決問(wèn)題帶來(lái)的樂趣。

        教學(xué)目標(biāo)

        (1).經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。

       。2).通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。(3).通過(guò)“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

        教學(xué)重難點(diǎn)

        重點(diǎn):經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”。

        難點(diǎn):理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

        教具、學(xué)具準(zhǔn)備

        若干個(gè)紙杯、筆、撲克牌

        教學(xué)策略

        “抽屜原理”應(yīng)用很廣泛且靈活多變,可以解決一些看上去很復(fù)雜、覺得無(wú)從下手,卻又是相當(dāng)有趣的數(shù)學(xué)問(wèn)題。但對(duì)于小學(xué)生來(lái)說(shuō),理解和掌握“抽屜原理”還存在著一定的難度。所以,在本節(jié)課的教學(xué)中我根據(jù)學(xué)生的認(rèn)知特點(diǎn)和規(guī)律,在設(shè)計(jì)時(shí)我主要運(yùn)用了產(chǎn)生式教學(xué)策略中的數(shù)感教學(xué)策略和應(yīng)用意識(shí)教學(xué)策略兩種方式,著眼于開拓學(xué)生視野,激發(fā)學(xué)生興趣,提高解決問(wèn)題的能力,通過(guò)動(dòng)手操作、小組活動(dòng)等方式組織教學(xué)。

        一、游戲激趣,初步體驗(yàn)抽屜原理。

        創(chuàng)設(shè)貼近學(xué)生生活實(shí)際的情景。情境中激發(fā)興趣,興趣是最好的老師。課前“搶椅子”的小游戲,簡(jiǎn)單卻能真實(shí)的反映“抽屜原理”的本質(zhì)。通過(guò)小游戲,一下就抓住學(xué)生的注意力,讓學(xué)生覺得這節(jié)課要探究的問(wèn)題,好玩又有意義。再充分利用學(xué)生已有的經(jīng)驗(yàn)學(xué)習(xí)數(shù)學(xué)。

        二、討論交流,操作探究,尋找抽屜原理的一般規(guī)律。

        這一環(huán)節(jié)我利用提出問(wèn)題——驗(yàn)證結(jié)論——解決問(wèn)題——初步建!\(yùn)用假設(shè)法——發(fā)現(xiàn)規(guī)律——介紹課外知識(shí)等數(shù)學(xué)活動(dòng),引導(dǎo)學(xué)生探究抽屜原理的一般規(guī)律。

        1、提出問(wèn)題:(1)把3本書、4支筆分別放進(jìn)2個(gè)抽屜、3個(gè)文筆筒中,不管怎么放,總有一個(gè)抽屜(筆筒)至少放進(jìn)幾本(幾枝)。讓學(xué)生猜測(cè)“至少會(huì)是”幾支?

        2、驗(yàn)證結(jié)論:不管學(xué)生猜測(cè)的結(jié)論是什么,都要求學(xué)生借助實(shí)物進(jìn)行操作,來(lái)驗(yàn)證結(jié)論。學(xué)生以小組為單位進(jìn)行操作和交流時(shí),教師深入了解學(xué)生操作情況,找出列舉所有情況的學(xué)生并板書。

        (1)先請(qǐng)列舉所有情況的學(xué)生進(jìn)行匯報(bào),一說(shuō)明列舉的不同情況,二結(jié)合操作說(shuō)明自己的結(jié)論。(教師根據(jù)學(xué)生的回答板書所有的情況)

        學(xué)生匯報(bào)完后,教師再利用多媒體課件,指出每種情況中都有幾支鉛筆被放進(jìn)了同一個(gè)文具盒。

       。2)參與教學(xué)策略。由問(wèn)題產(chǎn)生的參與,是思維的參與。教師充分發(fā)揮學(xué)生的主觀能動(dòng)性,創(chuàng)設(shè)豐富生動(dòng)、富有挑戰(zhàn)性的生活情境,激發(fā)學(xué)生參與的興趣,通過(guò)問(wèn)題激發(fā)學(xué)生主動(dòng)參與學(xué)習(xí)活動(dòng),積極參與思考、討論、動(dòng)手實(shí)踐、嘗試練習(xí),真正做學(xué)習(xí)的主人。如利用“鴿巢原理”中鴿子的聰明和機(jī)智一一占巢以及同學(xué)搶座位的做法讓學(xué)生自然而然想到抽屜原理和“平均分”有著非常緊密的聯(lián)系,再結(jié)合前面學(xué)生的動(dòng)手操作驗(yàn)證平均分的的作用。

       。3)合作教學(xué)策略。合作策略是指通過(guò)教師與學(xué)生之間,尤其是學(xué)生與學(xué)生之間的共同合作,達(dá)到某一預(yù)期的教學(xué)目標(biāo)。小組學(xué)習(xí)活動(dòng)是合作教學(xué)中最基本、最常用的形式。培養(yǎng)學(xué)生合作交流的習(xí)慣是非常重要的。

        教學(xué)過(guò)程

        一、課前游戲引入。

        上課前,我們先來(lái)熱身一下,請(qǐng)五位同學(xué)一起來(lái)玩“搶座位”的游戲。5人搶4個(gè)位置,說(shuō)開始后每人必須坐在位置上。你們先想像一下他們可能的坐后的情景,看老師猜的對(duì)不對(duì)。

        他們都坐下了么?老師不用看就知道“一定有一把椅子上坐了兩個(gè)同學(xué),對(duì)不對(duì)?假如請(qǐng)這五位同學(xué)再坐,不管怎么坐,總有一張椅子至少坐兩個(gè)同學(xué),同意么?板書:總有 至少

        其實(shí)這里蘊(yùn)含了一個(gè)有趣的數(shù)學(xué)原理,是什么原理呢,它里面又有什么需要我們?nèi)ヌ接懩兀?/p>

        二、通過(guò)操作,探究新知

       。ㄒ唬┨骄坷1

        1、研究3本書放進(jìn)2個(gè)抽屜里。

       。1)要把3 本書放進(jìn)2個(gè)抽屜,有幾種放法?請(qǐng)同學(xué)們想一想,同桌擺一擺,再把你的想法在小組內(nèi)交流。(提醒學(xué)生左2右一與左1右2是同一種方法)

       。2)反饋:兩種放法:板書(3,0)和(2,1)

        (3)觀察這兩種放法,同學(xué)們有什么發(fā)現(xiàn)呢?(總有一個(gè)抽屜至少放有2本書)讓孩子們充分地說(shuō)(仿照搶座位來(lái)說(shuō))。板書:總有一個(gè)抽屜至少放有2本書。

       。4)“總有”什么意思?你能用另外一個(gè)詞代替它(一定有)(5)“至少”有2本什么意思?(最少是2本,2本或者2本以上)小結(jié):這就是數(shù)學(xué)上著名的 “抽屜原理”。即把東西放入抽屜里,怎么放,出現(xiàn)什么現(xiàn)象。

        2、研究4枝筆放進(jìn)3個(gè)杯子。

       。1)現(xiàn)要把4枝筆放進(jìn)3個(gè)杯子里,有幾種放法?請(qǐng)同學(xué)們4人一小組動(dòng)手?jǐn)[一擺,再把你的想法在小組內(nèi)交流。

       。2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。多媒體依照學(xué)生回答展示放的情況,并把放有2枝或2枝以上的杯子用紅線圈出。

       。3)從這四種放法,同學(xué)們有什么發(fā)現(xiàn)?(總有一個(gè)杯子至少放有2枝筆)(4)小結(jié):同學(xué)們?cè)谘芯?枝筆放入3個(gè)杯子里是也得出了相同的結(jié)論。那么你能用抽屜原理告訴老師這里有幾個(gè)抽屜嗎?其實(shí),數(shù)學(xué)上又把“抽屜原理”叫做“鴿巢原理”。(5)多媒體出示4個(gè)鴿巢 5只鴿子

        問(wèn):鴿子的進(jìn)巢情況會(huì)怎樣,還有前面的結(jié)論嗎? 學(xué)生想象一下鴿子回巢的情景,小組討論進(jìn)巢的實(shí)際現(xiàn)象。

        (6)引導(dǎo)學(xué)生根據(jù)前面搶座位游戲,再結(jié)合聰明的鴿子進(jìn)巢情景模擬試驗(yàn),說(shuō)明“抽屜原理”也就是“鴿巢原理”和“平均分”有關(guān)(突破難點(diǎn))。由平均分引出除法算式。

       。7)師生總結(jié):如要能一眼看出擺放結(jié)果,利用平均分(除法算式)比列舉法要簡(jiǎn)單、明了、方便的多

       。8)學(xué)生用除法算式表示前面游戲和3個(gè)活動(dòng)。叫生板演。

        3、(1)把6枝筆放進(jìn)5個(gè)杯子,是不是總有一個(gè)杯子至少有2枝筆?為什么?

        把7枝筆放進(jìn)6個(gè)杯子,是不是總有一個(gè)杯子至少有2枝筆?為什么?

        把100枝筆放進(jìn)99個(gè)杯子,是不是總有一個(gè)杯子至少有2枝筆?為什么?(2)從剛才我們的探究活動(dòng)中,你有什么發(fā)現(xiàn)?小組交流。匯報(bào):只要放的筆比杯子的數(shù)量多1,總有一個(gè)杯子里至少放進(jìn)2枝筆。提示學(xué)生用字母表示N+1個(gè)筆放進(jìn)N個(gè)杯子里,總有一個(gè)杯子里至少有兩枝筆。

       。3)如果筆數(shù)比杯子數(shù)多2呢?多3呢?是不是也能得到結(jié)論:“總有一個(gè)杯子至少有2枝筆!睌[一擺,說(shuō)一說(shuō)。

       。4)小結(jié):剛才我們分析了把筆放進(jìn)杯子的情況,只要筆數(shù)量多于杯子數(shù)量時(shí),總有一個(gè)杯子至少放進(jìn)2枝筆。

       。5)如果7只鴿子飛進(jìn)5個(gè)鴿巢,情況怎樣呢?8只呢(多媒體出示)同桌交流,匯報(bào),(6)寫出除法算式,總結(jié)結(jié)論。

       。ǘ┨骄坷2

        1、研究把5本書放進(jìn)2個(gè)抽屜中。(1)多媒體出示 5本書 2個(gè)抽屜 會(huì)有幾種放置情況?學(xué)生動(dòng)手放并反饋(5,0)、(4,1)和(3,2)

       。2)從三種情況中,我們可以得到怎樣的結(jié)論呢?(每一種放法里總有一個(gè)抽屜至少放進(jìn)了3本書)

        (3)最能一眼看出結(jié)論的是哪種方法:即先在每個(gè)抽屜里放進(jìn)2本書,剩下的1本書放進(jìn)任何一個(gè)抽屜中,這個(gè)抽屜就有3本書了。也就是平均分,用算式表示是:5÷2=2?1(商2表示什么,余數(shù)1表示什么)

        2、類推:如果把7本書放進(jìn)2個(gè)抽屜中,總有一個(gè)抽屜至少放進(jìn)4本書。

        如果把9個(gè)本書放進(jìn)2個(gè)抽屜中。總有一個(gè)抽屜至少放5本書。

        如果把11本書放進(jìn)3個(gè)抽屜中。至少有一個(gè)抽屜放進(jìn)4本書。

        3、板書算式后提問(wèn):現(xiàn)在你們又有什么發(fā)現(xiàn),放置結(jié)果的至少數(shù)又有什么規(guī)律?小組討論后互相說(shuō)說(shuō)并匯報(bào)結(jié)論。得出;

        至少數(shù) = 商+1 問(wèn):如果沒有余數(shù)結(jié)論是什么(至少數(shù) =商)

        這就是今天我們學(xué)習(xí)的“抽屜原理”的一個(gè)小奧秘。經(jīng)過(guò)剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡(jiǎn)單的思維過(guò)程,個(gè)個(gè)都是了不起的數(shù)學(xué)家。其實(shí)“ 抽屜原理”最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用!俺閷显怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。(多媒體顯示抽屜原理的來(lái)歷)

        4、在我們的生活中,常常會(huì)遇到抽屜原理,如課前我們玩的游戲。

        5、小結(jié):從以上的學(xué)習(xí)中,我們發(fā)現(xiàn)在解決抽屜原理時(shí),我們是把物體盡可量多地“平均分”給各個(gè)抽屜,總有一個(gè)抽屜比平均分得的物體數(shù)多1。)

        三、遷移與拓展

        下面我們一起來(lái)放松一下,做個(gè)小游戲。

        (1)我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請(qǐng)五位同學(xué)每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請(qǐng)大家猜測(cè)一下,同種花色的至少有幾張?為什么?任意抽出來(lái)的五張至少有幾張是同一種顏色的?

       。2)在我們班的任意13人中,總有至少幾個(gè)人的屬相相同,想一想,為什么?

       。3)六(1)班有學(xué)生55人,我們可以肯定,在這55人中,至少有 人的生日在同一個(gè)月?想一想,為什么?

       。4)多媒體出示:數(shù)學(xué)家波沙童年的故事。

        匈牙利現(xiàn)代數(shù)學(xué)家厄爾迪斯說(shuō)過(guò)這樣一句名言:“數(shù)學(xué)家就是將咖啡變?yōu)槎ɡ淼臋C(jī)器!

        有一次厄爾迪斯聽說(shuō)本國(guó)有個(gè)9歲的神童叫波沙,他便專程到布達(dá)佩斯去看他。見面后,他問(wèn)波沙:“從

        1、2、3??100中任意取51個(gè)不相同的數(shù),其中必有兩個(gè)互質(zhì),這是為什么?” 波沙正在喝咖啡,他用湯匙在杯子里攪了幾下,然后就輕松地回答了這個(gè)看似簡(jiǎn)單卻又難以回答的問(wèn)題:“將

        1、2、3??100分成50個(gè)組,每組兩個(gè)相鄰的數(shù)為1,2|3,4|??|99,100|。如果每組中各取一個(gè)數(shù),那么至多只能取出50個(gè)數(shù)。因此如果取出51個(gè)數(shù),那么必有一組的兩個(gè)數(shù)都被取出。而每?jī)蓚(gè)相鄰的自然數(shù)互質(zhì),因此取出的51個(gè)數(shù)中必有兩個(gè)數(shù)互質(zhì)。

        這里就運(yùn)用到了我們今天所學(xué)的抽屜原理的相關(guān)知識(shí)。這節(jié)課你有哪些收獲呢?

        老師對(duì)你們利用抽屜原理解決實(shí)際問(wèn)題充滿了信心,希望你們?cè)俳釉賲枺?/p>

        四、總結(jié)全課

        五、布置作業(yè)。

        2、做一做:(出示幻燈片)

        (1)張叔叔參加飛鏢比賽投了5鏢,成績(jī)是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。這是為什么?

        (2)某班有32名小朋友是在8月份出生的,能否找到兩個(gè)在同一天過(guò)生日的小朋友?為什么?(3)小明和小剛擲色子,小明說(shuō):“我擲了7次,至少有2次點(diǎn)數(shù)相同!毙∶髡f(shuō)得對(duì)嗎?為什么?

       。┌鍟O(shè)計(jì)

        抽屜原理

        總有(一個(gè)抽屜)至少放有:商+1

        3÷2=1(本)??1(本)2(3,0)(2,1)4÷3=1(枝)??1(枝)2(4,0,0)(3,1,0)

        2(2,2,0)(2,1,0)

        5÷4=1(只)??1(只)2 7÷5=1(只)??2(只)2 8÷5=1(只)??3(只)2 5÷2=2(本)??1(本)3 7÷2=3(本)??1(本)4 9÷2=4(本)??1(本)5 11÷3=3(本)??2(本)4

        至少數(shù)=商+1

      抽屜原理教學(xué)設(shè)計(jì)13

        教學(xué)目標(biāo):

        1.知識(shí)與能力目標(biāo):

        經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。通過(guò)猜測(cè)、驗(yàn)證、觀察、分析等數(shù)學(xué)活動(dòng),建立數(shù)學(xué)模型,發(fā)現(xiàn)規(guī)律。滲透“建!彼枷搿

        2.過(guò)程與方法目標(biāo):

        經(jīng)歷從具體到抽象的探究過(guò)程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。

        3.情感、態(tài)度與價(jià)值觀目標(biāo):

        通過(guò)“抽屜原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問(wèn)題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。

        教學(xué)重點(diǎn):經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”。

        教學(xué)難點(diǎn):理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

        教學(xué)準(zhǔn)備:教具:5個(gè)杯子,6根小棒;學(xué)具:每組5個(gè)杯子,6根小棒。

        教學(xué)過(guò)程:

        一、游戲激趣,初步體驗(yàn)。

        師:同學(xué)們,你們玩過(guò)撲克牌嗎?下面我們用撲克牌來(lái)玩?zhèn)游戲。大家知道一副撲克牌有54張,如果去掉兩張王牌,就剩52張,對(duì)嗎?如果從這52張撲克牌中任意抽取5張,我敢肯定地說(shuō):“張5張撲克牌至少有2張是同一種花色的,你們信嗎?那就請(qǐng)5位同學(xué)上來(lái)各抽一張,我們來(lái)驗(yàn)證一下。如果再請(qǐng)五位同學(xué)來(lái)抽,我還敢這樣肯定地說(shuō),你們相信嗎?其實(shí)這里面蘊(yùn)藏著一個(gè)非常有趣的數(shù)學(xué)原理,想不想研究?

        二、操作探究,發(fā)現(xiàn)規(guī)律。

       。ㄒ唬┙(jīng)歷“抽屜原理”的探究過(guò)程,理解原理。

        1.研究小棒數(shù)比杯子數(shù)多1的情況。

        師:今天這節(jié)課我們就用小棒和杯子來(lái)研究。板書:小棒杯子

        師:如果把3根小棒放在2個(gè)杯子里,該怎樣放?有幾種放法?

        學(xué)生分組操作,并把操作的結(jié)果記錄下來(lái)。

        請(qǐng)一個(gè)小組匯報(bào)操作過(guò)程,教師在黑板上記錄。

        師:觀察這所有的擺法,你們發(fā)現(xiàn)總有一個(gè)杯子里至少有幾根小棒?板書:總有一個(gè)杯子里至少有。

        師:依此推想下去,4根小棒放在3個(gè)杯子里,又可以怎樣放?大家再來(lái)擺擺看,看看又有什么發(fā)現(xiàn)?

        學(xué)生分組操作,并把操作的結(jié)果記錄下來(lái)。

        請(qǐng)一個(gè)小組代表匯報(bào)操作過(guò)程,教師在黑板上記錄。

        師:觀察所有的擺法,你發(fā)現(xiàn)了什么?這里的“總有”是什么意思?“至少”又是什么意思?

        師:那如果把6根小棒放在5個(gè)杯子里,猜一猜,會(huì)有什么樣的結(jié)果?

        師:怎樣驗(yàn)證猜測(cè)的結(jié)果對(duì)不對(duì),你又什么好方法?引導(dǎo)學(xué)生不再一一列舉,用平均分的方法來(lái)找答案。并用算式表示分的結(jié)果:6÷5=1……1

        師:那如果用這種方法,你知道把7根小棒放在6個(gè)杯子里,把10根小棒放在9個(gè)杯子里,把100根小棒放在99個(gè)杯子里,會(huì)有什么樣的結(jié)果呢?你又從中發(fā)現(xiàn)了什么規(guī)律呢?

        師:我們發(fā)現(xiàn)了小棒的數(shù)量比杯子的數(shù)量多1,總有一個(gè)杯子里至少有2根小棒。那如果小棒的數(shù)量比杯子的數(shù)量多2、多3,又會(huì)有什么樣的結(jié)果呢?

        2、研究小棒數(shù)比杯子數(shù)多2、多3的情況。

        師:如果把5根小棒放在3個(gè)杯子里,會(huì)有什么結(jié)果?

        引導(dǎo):先平均分,每個(gè)杯子里分得1根小棒,余下的2根小棒又該怎么分呢?

        師:把7根小棒放在3個(gè)杯子里,會(huì)有什么結(jié)果呢?為什么?

        3、研究小棒數(shù)比杯子數(shù)的2倍多、3倍多…等情況。

        師:如果把9根小棒放在4個(gè)杯子里,把15根小棒放在4個(gè)杯子里,分別又會(huì)有什么結(jié)果?

        小組內(nèi)討論,再請(qǐng)同學(xué)說(shuō)結(jié)果和理由。

        4、總結(jié)規(guī)律。

        師:我們將小棒看做物體、把杯子看做抽屜,你發(fā)現(xiàn)了什么規(guī)律?

        總結(jié):把m個(gè)物體放在n個(gè)抽屜里(m﹥n),總有一個(gè)抽屜至少有“商+1”個(gè)物體。

        5、介紹抽屜原理。

        “抽屜原理”又稱“鴿巢原理”,最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱“狄里克雷原理”,這一原理在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用!俺閷显怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。

        三、應(yīng)用“抽屜原理”,感受數(shù)學(xué)的魅力。

        1、把5本書放進(jìn)2個(gè)抽屜中,不管怎么放,總有一個(gè)抽屜至少放進(jìn)幾本書?為什么?

        先思考:這里是把什么看做物體?什么看做抽屜?再說(shuō)結(jié)果和理由。

        2、8只鴿子飛回3個(gè)鴿舍,至少有3只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?

        3、向東小學(xué)六年級(jí)共有370名學(xué)生,其中六(2)班有49名學(xué)生。請(qǐng)問(wèn)下面兩人說(shuō)的對(duì)嗎?為什么?

        (1)六年級(jí)里至少有兩人的生日是同一天。

        (2)六(2)班中至少有5人是同一個(gè)月出生的。

        4、張叔叔參加飛鏢比賽,投了5鏢,成績(jī)是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么?

        5、師:開課時(shí)我們做的游戲還記得嗎?為什么老師可以肯定地說(shuō):從52張牌中任意抽取5張牌,至少會(huì)有2張牌是同一花色的?你能用所學(xué)的抽屜原理來(lái)解釋嗎?

        四、全課小結(jié)。

        說(shuō)一說(shuō):今天這節(jié)課,我們又學(xué)習(xí)了什么新知識(shí)?(師生共同對(duì)本節(jié)課的內(nèi)容進(jìn)行小結(jié))

        五、布置作業(yè)。

        課本73頁(yè)練習(xí)十二第2、4題。

        六、板書設(shè)計(jì)。

        數(shù)學(xué)廣角——抽屜原理

        物體數(shù)÷抽屜數(shù)= 商……余數(shù) 至少數(shù) =商+1

        小棒 杯子 總有一個(gè)杯子里至少有

        3 2 2

        4 3 2

        6 ÷ 5 = 1……1 2

        5 ÷ 3 = 1……2 2

        7 ÷ 4 = 1……3 2

        9 ÷ 4 = 2……1 3

        15 ÷ 4 = 3……3 4

        教學(xué)反思:

        1、通過(guò)游戲,激發(fā)興趣。

        興趣是最好的老師。課前我設(shè)計(jì)了從52張撲克牌(去掉2張王牌)中任意抽取5張,老師肯定地說(shuō):至少有2張牌是同一花色的,在學(xué)生半信半疑時(shí),師生共同游戲,讓學(xué)生信服,但又不知道其中奧妙,這樣導(dǎo)入,學(xué)生興趣盎然。

        2、操作探究,建立模型。

        本節(jié)課充分放手,讓學(xué)生自主思考,采用自己的方法“證明”:“把4根小棒放入3個(gè)杯子里,不管怎么放,總有一個(gè)杯子里至少有2根小棒”,然后交流展示,為后面開展教與學(xué)的活動(dòng)做了鋪墊。此處設(shè)計(jì)注意了從最簡(jiǎn)單的數(shù)據(jù)開始擺放,有利于學(xué)生觀察、理解,有利于調(diào)動(dòng)所有的學(xué)生積極性。在有趣的類推活動(dòng)中,引導(dǎo)學(xué)生得出一般性的結(jié)論,讓學(xué)生體驗(yàn)和理解“抽屜原理”的最基本原理,當(dāng)物體個(gè)數(shù)大于抽屜個(gè)數(shù)時(shí),一定有一個(gè)抽屜中放進(jìn)了至少2個(gè)物體。這樣的教學(xué)過(guò)程,從方法層面和知識(shí)層面上對(duì)學(xué)生進(jìn)行了提升,有助于發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。在評(píng)價(jià)學(xué)生各種“證明”方法,針對(duì)學(xué)生的不同方法教師給予針對(duì)性的鼓勵(lì)和指導(dǎo),讓學(xué)生在自主探索中體驗(yàn)成功,獲得發(fā)展。在學(xué)生自主探索的基礎(chǔ)上,進(jìn)一步比較優(yōu)化,讓學(xué)生逐步學(xué)會(huì)運(yùn)用一般性的數(shù)學(xué)方法來(lái)思考問(wèn)題。在這一環(huán)節(jié)的教學(xué)中抓住了假設(shè)法最核心的思路就是用“有余數(shù)除法” 形式表示出來(lái),使學(xué)生借助直觀,很好的理解了如果把物體盡量多地“平均分”給各個(gè)抽屜里,看每個(gè)抽屜里能分到多少,余下的不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里比平均分得的數(shù)量多1。特別是對(duì)“某個(gè)抽屜至少有的數(shù)量”是除法算式中的商加“1”,而不是商加“余數(shù)”,教師適時(shí)挑出針對(duì)性問(wèn)題進(jìn)行交流、討論,使學(xué)生從本質(zhì)上理解了“抽屜原理”。

        3、解釋應(yīng)用,深化知識(shí)。

        學(xué)了“抽屜原理”有什么用?能解決生活中的什么問(wèn)題,這就要求在教學(xué)中要注重聯(lián)系學(xué)生的生活實(shí)際。在應(yīng)用“抽屜原理”,感受數(shù)學(xué)的`魅力環(huán)節(jié)里,我設(shè)計(jì)了一組簡(jiǎn)單、真實(shí)的生活情境,讓學(xué)生用學(xué)過(guò)的知識(shí)來(lái)解釋這些現(xiàn)象,有效的將學(xué)生的自主探究學(xué)習(xí)延伸到課外,體現(xiàn)了“數(shù)學(xué)來(lái)源于生活,又還原于生活”的理念。

        教學(xué)永遠(yuǎn)是一門遺憾的藝術(shù)。

        反思本節(jié)課的教學(xué),有以下幾點(diǎn)不足:

        1、在把3根小棒放進(jìn)2個(gè)杯子,把4根小棒放進(jìn)3個(gè)杯子里,都讓學(xué)生進(jìn)行了操作并做了記錄,但對(duì)學(xué)生的有序思考重視不夠,導(dǎo)致課堂檢測(cè)時(shí),學(xué)生用列舉法解決問(wèn)題的時(shí)候,有兩個(gè)同學(xué)把所有的可能都列舉對(duì)了,但不是有序排列的。還有兩個(gè)差一點(diǎn)的學(xué)生由于思維無(wú)序,因此沒能正確列舉出來(lái)。

        2、在把5根小棒放在3個(gè)杯子里,有學(xué)生出現(xiàn)了總有一個(gè)杯子里至少有3根小棒的結(jié)論,可能是用5÷3=1……2,1+2=3,也就是很多同學(xué)容易出的錯(cuò)誤:用商+余數(shù)。這時(shí)老師沒有抓住這個(gè)同學(xué)思維中的錯(cuò)誤制造思維矛盾,因此感覺學(xué)生對(duì)總有一個(gè)抽屜至少有的數(shù)量=商+1這一知識(shí)點(diǎn)的理解還不夠透徹。

        3學(xué)生在用“抽屜原理” 解決實(shí)際問(wèn)題時(shí),書寫格式教師指導(dǎo)不到位。有些題目是要先說(shuō)結(jié)論,再說(shuō)理由。那么說(shuō)理由的時(shí)候,有的同學(xué)只列了算式,如:5÷3=1……2,1+1=2,還有的同學(xué)先列算式,再回答問(wèn)題。在區(qū)教研室周俊主任的指導(dǎo)下,我才明白這類題目的書寫格式是:因?yàn)?÷3=1(根)……2(根),1+1=2(根),所以每個(gè)杯子里至少有2根小棒。

        總的說(shuō)來(lái),本節(jié)課學(xué)生的學(xué)習(xí)效果還不錯(cuò),全班學(xué)生針對(duì)這類問(wèn)題都能快速做出正確分析與判斷。我也算圓滿完成了這節(jié)課的學(xué)習(xí)目標(biāo),實(shí)現(xiàn)了三維目標(biāo)的有機(jī)整合。

      抽屜原理教學(xué)設(shè)計(jì)14

        今天我將要為大家講的課題是《抽屜原理》。

        首先,我對(duì)本節(jié)教材進(jìn)行一些分析:

        一、教材結(jié)構(gòu)與內(nèi)容簡(jiǎn)析

        本節(jié)內(nèi)容在全書及章節(jié)的地位:《抽屜原理》是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書第十二冊(cè)第五單元第一節(jié)。本節(jié)共三個(gè)例題,例1、例2的教材通過(guò)幾個(gè)直觀例子,借助實(shí)際操作向?qū)W生介紹抽屜原理,例3則是在學(xué)生理解抽屜原理這一數(shù)學(xué)方法的基礎(chǔ)上,用這一原理解決簡(jiǎn)單的實(shí)際問(wèn)題。

        數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識(shí),因此本節(jié)課在教學(xué)中力圖向?qū)W生的展示數(shù)學(xué)原理的靈活應(yīng)用,讓學(xué)生感受數(shù)學(xué)的魅力,貫穿初步的數(shù)論及組合知識(shí)。

        二、教學(xué)目標(biāo)

        根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):

        1 、基礎(chǔ)知識(shí)目標(biāo):經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”。

        2 、能力訓(xùn)練目標(biāo):

        1)、會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。

        2)、通過(guò)操作發(fā)展學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力,形成比較抽象的數(shù)學(xué)思維。

        3 、個(gè)性品質(zhì)目標(biāo):

        通過(guò)“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的`魅力,產(chǎn)生主動(dòng)學(xué)數(shù)學(xué)的興趣。

        三、教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵

        本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)。

        重點(diǎn):經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”。通過(guò)設(shè)計(jì)教學(xué)環(huán)節(jié)讓學(xué)生動(dòng)手操作,自主探索,小組合作交流的方法找到解決問(wèn)題的關(guān)鍵,總結(jié)出解決問(wèn)題的辦法。

        難點(diǎn):理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。通過(guò)不同類型的練習(xí),以及觀看鴿巢原理演示圖,建構(gòu)知識(shí),從本質(zhì)上認(rèn)識(shí)抽屜原理,將抽屜原理模型化,從而突破難點(diǎn)。

        下面,為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上談?wù)劊?/p>

        四、教法

        數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”,我們?cè)谝詭熒葹橹黧w,又為客體的原則下,展現(xiàn)獲取知識(shí)和方法的思維過(guò)程。由于本節(jié)課的教學(xué)內(nèi)容較為抽象,著重采用情境教學(xué)法,直觀演示法與談話法相結(jié)合的方式進(jìn)行教學(xué)。

        五、學(xué)法

        教學(xué)最重要的就是讓學(xué)生學(xué)會(huì)學(xué)習(xí)的方法。授之以漁,而非授之以魚!因此在教學(xué)中要特別重視學(xué)法的指導(dǎo)。本節(jié)課學(xué)生主要采用了自主、合作、探究式的學(xué)習(xí)方式。

        六、教學(xué)程序及設(shè)想

        1、由魯賓孫航海故事引入:把三枚金幣放進(jìn)兩個(gè)盒子里,至少有一個(gè)盒子會(huì)放幾枚金幣?把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的讓學(xué)生感興趣的問(wèn)題,讓學(xué)生產(chǎn)生強(qiáng)烈的求知欲望,使學(xué)生的整個(gè)學(xué)習(xí)過(guò)程成為“探索”,繼而緊張地沉思,尋找理由,證明過(guò)程。

        在實(shí)際情況下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn),同化和索引出當(dāng)前學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。

        本題從最簡(jiǎn)單的數(shù)據(jù)開始擺放,有利于學(xué)生觀察、理解,有利于調(diào)動(dòng)所有的學(xué)生積極參與進(jìn)來(lái)。

      抽屜原理教學(xué)設(shè)計(jì)15

        【設(shè)計(jì)理念】

        本課通過(guò)創(chuàng)設(shè)情境、直觀和實(shí)際操作,使學(xué)生進(jìn)一步經(jīng)歷“抽屜原理”的探究過(guò)程,并對(duì)一些簡(jiǎn)單的實(shí)際問(wèn)題“模型化”,從而在用“抽屜原理”加以解決的過(guò)程中,促進(jìn)邏輯推理能力的發(fā)展,培養(yǎng)分析、推理、解決問(wèn)題的能力以及探索數(shù)學(xué)問(wèn)題的興趣,同時(shí)也使學(xué)生感受到數(shù)學(xué)思想方法的奇妙與作用,在數(shù)學(xué)思維的訓(xùn)練中,逐步形成有序地、嚴(yán)密地思考問(wèn)題的意識(shí)。

        【教學(xué)內(nèi)容】

        《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)》六年級(jí)下冊(cè)第70--71頁(yè)的內(nèi)容。

        【教學(xué)目標(biāo)】

        1.經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。

        2.通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

        3.通過(guò)“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

        【教學(xué)重點(diǎn)】經(jīng)歷“抽屜原理”的探究過(guò)程,了解掌握“抽屜原理”。

        【教學(xué)難點(diǎn)】 理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

        【教學(xué)準(zhǔn)備】多媒體課件、每組準(zhǔn)備13枚“金幣”和5個(gè)杯子。

        【教學(xué)課時(shí)】 一課時(shí)

        【教學(xué)過(guò)程】

        一.創(chuàng)設(shè)情景,引入新課。

        在研究新課之前得先請(qǐng)同學(xué)們見見自己的老朋友,看看誰(shuí)還認(rèn)識(shí)他?

        出示圖片——魯濱遜畫像。

        二.創(chuàng)設(shè)平臺(tái),合作探究。

        一).探索比抽屜數(shù)多1的至少數(shù)。

        話說(shuō)魯賓遜完全不顧父愿,甚至違抗父命,也全然不聽母親的懇求和朋友們的勸阻,一意孤行開始了他的冒險(xiǎn)之旅。一天拂曉,當(dāng)他所乘坐的正駛向加那利群島時(shí),被一艘土耳其海盜船襲擊,所有船員全部被俘。魯賓遜被海盜船長(zhǎng)作為自己的戰(zhàn)利品留了下來(lái),成了船長(zhǎng)的奴隸。這一日,海盜們沒有出海,懶洋洋的在岸上休息,船長(zhǎng)命令魯賓遜給海盜們傳授些文明人的知識(shí),讓海盜們變得像魯賓遜一樣富有智慧?粗雷由祥W閃發(fā)光的金幣,魯賓遜想到了一個(gè)辦法,他找來(lái)兩個(gè)盒子:

        出示例一:

        1.把3枚金幣放入2個(gè)盒子里,有幾種放法?

        學(xué)生拿起自己手中的學(xué)具做實(shí)驗(yàn),小組討論后發(fā)言,其他同學(xué)可以補(bǔ)充。

        如果每個(gè)盒子里最少放一枚,要使所有金幣都放進(jìn)盒子里,不管怎么放,總有一個(gè)盒子里至少有幾枚金幣?

        2.師:把4枚金幣都放進(jìn)3個(gè)盒子里,有幾種不同的放法?請(qǐng)同學(xué)們實(shí)際放放看。(師巡視,了解情況,個(gè)別指導(dǎo))

        師:誰(shuí)來(lái)展示一下你擺放的情況?這種分法,實(shí)際就是先怎么分的?為什么要先平均分?(組織學(xué)生討論)

        小結(jié): 用最不利原則設(shè)想,如果我們先讓每個(gè)筆筒里放1枚金幣,最多放3枚。剩下的1枚還要放進(jìn)其中的一個(gè)筆筒。所以不管怎么放,總有一個(gè)筆筒里至少放進(jìn)2枚金幣。

        二).探索比抽屜數(shù)多幾的至少數(shù)。

        師:那么把13枚金幣放進(jìn)3個(gè)盒子里呢?

        (可以結(jié)合操作說(shuō)一說(shuō))

        師:把13枚金幣放進(jìn)5個(gè)盒子里呢?

        (留給學(xué)生思考的空間,師巡視了解各種情況)

        師:這是我們通過(guò)實(shí)際操作現(xiàn)了這個(gè)結(jié)論。那么,我們能不能找到一種更為直接的方法,得到這個(gè)結(jié)論呢?請(qǐng)同學(xué)們觀察板書,小組研究、討論。找一找其中的規(guī)律。

        小結(jié):至少數(shù)等于數(shù)的'本數(shù)除以抽屜數(shù),再用所得的商加1。

       。ò鍟褐辽贁(shù)=商+1)

        三).解析原理,加深認(rèn)識(shí)

        師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”。抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱“狄里克雷原理”,也稱作“鴿巢原理”。

        出示:7只鴿子飛回5個(gè)鴿舍,至少有兩只鴿子飛進(jìn)同一個(gè)鴿舍?學(xué)生回答后觀看演示。

        三.應(yīng)用原理,解決問(wèn)題。

        一).鞏固應(yīng)用一——撲克牌游戲

        16世紀(jì)的海盜們哪能摸得清什么抽屜原理呢?一聽原理二字便昏頭漲腦,不知什么時(shí)候早在下面玩起了撲克牌。這時(shí),魯賓遜靈機(jī)一動(dòng),將大家正玩的撲克牌中的大小王拿掉,說(shuō):每人抽五張牌,不管怎么抽取,至少有兩張是同一花色的牌,你們相信嗎?說(shuō)著,給坐在旁邊的海盜甲海盜乙每人任意抽取了5張牌。“如果有一個(gè)人手里的牌都不是同一花色,任由船長(zhǎng)處置;如果每個(gè)人手里最少有2張花色相同的牌,請(qǐng)船長(zhǎng)允許我回故鄉(xiāng)赫爾去吧!贝L(zhǎng)眼珠一轉(zhuǎn),同意了魯賓遜的要求。

        那么,事實(shí)是不是這樣呢?同學(xué)們相信魯賓遜的話嗎?

        教師發(fā)撲克牌,學(xué)生回答。

        二).鞏固應(yīng)用二——分寶1

        魯賓遜雖然證實(shí)了自己是正確的,可是狡猾的船長(zhǎng)并沒有答應(yīng)他的要求,放他回家。魯賓遜只好跟著海盜首領(lǐng)到處掠奪殺戮。

        有一次,他們獲得了很多寶貝,海盜首領(lǐng)非常高興,對(duì)手下8個(gè)小海盜說(shuō),這些寶貝都給你們了,你們自己處理吧,沒想到小海盜平時(shí)都搶慣了,一擁而上,有人拿得很多,有人很少,甚至有人一件寶貝也沒拿到,看到小海盜們亂哄哄的樣子,海盜首領(lǐng)非常生氣,就想懲罰一下那些貪婪的海盜,機(jī)會(huì)終于來(lái)了!有一次:海盜們又獲得了73件寶貝,海盜首領(lǐng)又叫8個(gè)小海盜自己分。且規(guī)定:1、必須分完。2、若某人拿10件或10件以上的寶貝,說(shuō)明他是個(gè)過(guò)分貪婪的人,就把他扔進(jìn)大海喂鯊魚。

        海盜們是否都能逃過(guò)這一劫呢?小組討論后派代表說(shuō)說(shuō)想法,其他同學(xué)可以補(bǔ)充。無(wú)論怎樣分,總有一個(gè)海盜至少會(huì)拿到10件,這個(gè)海盜怎么辦呢?學(xué)生自由談看法。

        師:正在海盜們擔(dān)心的時(shí)候,事情有了轉(zhuǎn)機(jī),聰明的魯賓遜趁著天黑偷偷地把一件寶貝扔進(jìn)大海,現(xiàn)在只剩下72件寶貝,大家都平安無(wú)事。

        三).鞏固應(yīng)用三——分寶2

        師:海盜們終于逃過(guò)一劫,海盜首領(lǐng)回到自己屋里,悶悶不樂,夫人問(wèn)他為什么不開心,海盜首領(lǐng)如實(shí)相告,夫人說(shuō)是不是有人把一件寶貝扔到海里去了,海盜首領(lǐng)如夢(mèng)方醒,決心下一次不再上當(dāng),又是在一個(gè)風(fēng)急天黑的夜晚:海盜們獲得了79件寶貝,首領(lǐng)還是要8個(gè)小海盜自己分,規(guī)則不變,還警告,79件寶貝已數(shù)得清清楚楚,誰(shuí)要是作弊,也要受到懲罰。

        師:小海盜們大驚失色,心想這下可能真的逃不過(guò)去了,只有聰明的魯賓遜鎮(zhèn)定自若,站出來(lái)對(duì)海盜首領(lǐng)說(shuō),既然寶貝比上次增加了6件,能不能把限定的10件提高1件?海盜首領(lǐng)心想,寶貝增加這么多,而限定只提高1件,還是肯定有人會(huì)受到懲罰,就同意了小海盜的請(qǐng)求。你認(rèn)為首領(lǐng)的想法對(duì)嗎?說(shuō)說(shuō)你是怎樣想的。

        學(xué)生先小組討論,然后再叫幾個(gè)學(xué)生來(lái)說(shuō)說(shuō)是怎樣想的。老師再對(duì)學(xué)生的思路進(jìn)行梳理。

        以上我們所碰到的問(wèn)題是什么問(wèn)題?他的解答或證明的方法是怎樣的?你能否找到被分的物品數(shù)和抽屜數(shù)?

        師:靠著魯賓遜的聰明才智,事情終于風(fēng)平浪靜,在以后的日子里魯賓遜自己的智慧贏得了海盜首領(lǐng)的信任,有了獨(dú)自駕駛小艇的權(quán)利,借著海盜首領(lǐng)拜訪朋友的機(jī)會(huì),魯賓遜駕著小艇逃到了一個(gè)無(wú)人的荒島,并搭救了一個(gè)野蠻人,起名“星期五”,有一天,他們倆無(wú)所事事,玩起了游戲。

        四).鞏固應(yīng)用4——摸球游戲

        他們用一個(gè)盒子,里面裝有同樣大小數(shù)量相同的紅、黃、藍(lán)球各若干個(gè),兩人各自摸到自己的盤子里,想一想,最少要摸幾次,才能保證一定有2個(gè)是同色的?

        讓學(xué)生講講思路,老師再對(duì)學(xué)生的思路進(jìn)行梳理。

        四.拓展延伸

        魯賓遜的故事今天先講到這里,通過(guò)今天的學(xué)習(xí)你有什么收獲?

        五.布置作業(yè)

        每人編2道抽屜類問(wèn)題作為今天的作業(yè),讓自己的同桌來(lái)證明或解答。

      【抽屜原理教學(xué)設(shè)計(jì)】相關(guān)文章:

      抽屜原理教學(xué)設(shè)計(jì)12-14

      《抽屜原理》教學(xué)設(shè)計(jì)02-22

      抽屜原理教學(xué)設(shè)計(jì)02-01

      抽屜原理優(yōu)秀教學(xué)設(shè)計(jì)03-05

      《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀【經(jīng)典】02-10

      《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀12-12

      《抽屜原理》教學(xué)設(shè)計(jì)15篇02-22

      《抽屜原理》教學(xué)設(shè)計(jì)(15篇)02-22

      《抽屜原理》教學(xué)設(shè)計(jì)14篇03-05

      《抽屜原理》教學(xué)設(shè)計(jì)(14篇)03-05