- 相關(guān)推薦
高二必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)優(yōu)秀
總結(jié)就是把一個(gè)時(shí)段的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的總結(jié),通過(guò)它可以全面地、系統(tǒng)地了解以往的學(xué)習(xí)和工作情況,因此我們要做好歸納,寫好總結(jié)?偨Y(jié)怎么寫才是正確的呢?以下是小編為大家收集的高二必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)優(yōu)秀,僅供參考,歡迎大家閱讀。
高二必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)優(yōu)秀1
1、幾何概型的定義:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡(jiǎn)稱幾何概型。
2、幾何概型的概率公式:P(A)=構(gòu)成事件A的區(qū)域長(zhǎng)度(面積或體積);試驗(yàn)的`全部結(jié)果所構(gòu)成的區(qū)域長(zhǎng)度(面積或體積)
3、幾何概型的特點(diǎn):
1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);
2)每個(gè)基本事件出現(xiàn)的可能性相等、
4、幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗(yàn)結(jié)果是可數(shù)的;而幾何概型則是在試驗(yàn)中出現(xiàn)無(wú)限多個(gè)結(jié)果,且與事件的區(qū)域長(zhǎng)度(或面積、體積等)有關(guān),即試驗(yàn)結(jié)果具有無(wú)限性,是不可數(shù)的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗(yàn)結(jié)果都具有等可能性,這是二者的共性。
高二必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)優(yōu)秀2
直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線,圓,圓心到l的距離為,則有;;
。2)過(guò)圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
。3)過(guò)圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。
設(shè)圓,兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。
當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;
當(dāng)時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;
當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;
當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓。
注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線
5、空間點(diǎn)、直線、平面的.位置關(guān)系
公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。
應(yīng)用:判斷直線是否在平面內(nèi)
用符號(hào)語(yǔ)言表示公理1:
公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線
符號(hào):平面α和β相交,交線是a,記作α∩β=a.
符號(hào)語(yǔ)言:
公理2的作用:
、偎桥卸▋蓚(gè)平面相交的方法。
、谒f(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過(guò)公共點(diǎn)。
③它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。
公理3:經(jīng)過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。
推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。
公理3及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)
公理4:平行于同一條直線的兩條直線互相平行
高二必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)優(yōu)秀3
圓的方程
1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的'點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。
2、圓的方程
。1)標(biāo)準(zhǔn)方程,圓心,半徑為r;
。2)一般方程
當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為
當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形。
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。
高二必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)優(yōu)秀4
空間角問(wèn)題
。1)直線與直線所成的角
、賰善叫兄本所成的角:規(guī)定為。
、趦蓷l相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。
、蹆蓷l異面直線所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。
。2)直線和平面所成的角
、倨矫娴钠叫芯與平面所成的角:規(guī)定為。
、谄矫娴拇咕與平面所成的角:規(guī)定為。
③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的'銳角,叫做這條直線和這個(gè)平面所成的角。
求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”。
在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:
。1)斜線上一點(diǎn)到面的垂線;
。2)過(guò)斜線上的一點(diǎn)或過(guò)斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。
(3)二面角和二面角的平面角
、俣娼堑亩x:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角
、芮蠖娼堑姆椒
定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角
垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過(guò)兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角
【高二必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)優(yōu)秀】相關(guān)文章:
高二必修三歷史知識(shí)點(diǎn)總結(jié)02-20
高二生物必修三知識(shí)點(diǎn)總結(jié)06-03
高二數(shù)學(xué)必修三第三章概率知識(shí)點(diǎn)總結(jié)12-17
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-10
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)08-30
高二政治必修四實(shí)現(xiàn)人生的價(jià)值知識(shí)點(diǎn)總結(jié)12-26